

End-to-End Institutional Content Lifecycle Architecture for DDQs/RFPs: From Centralized Intake and Triage to Submission and Archival Feedback Loops

Ekaterina Dmitrieva

MVision Private Equity Advisers, New York, USA.

Abstract

The study is aimed at developing and substantiating an end-to-end architecture for the content life cycle intended to produce responses to Requests for Proposal (RFP) and Due Diligence Questionnaires (DDQs). The methodological framework relies on a systematic review of scientific and applied literature in accordance with PRISMA 2020 standards, as well as an analysis of a case study from a global megafund. The results indicate that implementation of the proposed model—incorporating intelligent material triage, a hierarchical taxonomy, and semantic inheritance of content—reduces time expenditures by ~40–65% range while simultaneously increasing data accuracy to 95% and above. Particular attention is given to mechanisms for embedding the requirements of the SEC marketing rule 206(4)-1(2024) into operational procedures, including formalization of the evidentiary base, version-control discipline, and routing of materials through compliance circuits. The paper additionally describes the formation of archival feedback loops designed to prevent the loss of institutional knowledge by anchoring sources, fixing approval statuses, and ensuring the reproducibility of decisions. The concluding part of the work supports the hypothesis of a direct relationship between the technological maturity of content management systems and fund competitiveness in the institutional market, where speed, verifiability, and consistency of disclosures become an investor trust criterion. The findings have practical relevance for heads of operations, investor relations units, and compliance professionals in the alternative asset management segment.

Keywords: Institutional Content Management, RFP/DDQ Architecture, Asset Management, Information Life Cycle, Knowledge Taxonomy, SEC Marketing Rule, Operational Efficiency, Private Capital, Reporting Automation, Compliance.

INTRODUCTION

By the end of 2024, total global assets under management (AUM) reached ~ USD 133 trillion; however, this growth has been unfolding against a backdrop of intensifying pressure on operating margins and increasing complexity of regulatory requirements [1]. Within the logic of the “great convergence” of markets, traditional and alternative managers face a sharp increase not only in the volume, but also in the substantive labor intensity of institutional requests.. Preparing one full-format RFP response typically requires at least 30–40 hours of working time on average, engaging cross-functional teams and creating a persistent load on subject-matter experts (SMEs), whose availability becomes a bottleneck as scale increases [2, 3].

The practical significance of the problem is amplified by the phenomenon of “content chaos,” in which up to 80% of corporate information is stored in an unstructured form, and employees’ cumulative time losses for locating and verifying data exceed 30% of working time [6]. This produces a systemic inefficiency: as AUM grows and product structures become more complex, the cost of extracting reliable knowledge increases faster than available operating

resources [4, 5]. A scientific gap emerges in the limited availability of integrated models capable of linking front-office operational circuits to architectural principles of knowledge management and compliance requirements, including the updated SEC Marketing Rule (SEC Marketing Rule 206(4)-1), which entered full force in 2024 [7, 8].

Under these conditions, the research **objective** is formulated as the design and empirical verification of a scalable, end-to-end institutional content life-cycle architecture that ensures accuracy, traceability, and operational efficiency in investor interactions.

The **novelty** of the approach lies in constructing a holistic architectural model in which hierarchical metadata inheritance is coupled with automated archival feedback cycles aimed at reducing operational entropy and eliminating recurring knowledge defects.

The proposed **hypothesis** is that a shift from fragmented, document-centric management to an architecture of atomic knowledge, supported by AI tools, yields a nonlinear increase in team throughput without a proportional expansion of headcount.

MATERIALS AND METHODS

The methodological basis of the study was formed through the triangulation of complementary approaches, enabling both theoretical depth and applied verifiability of conclusions. The core instrument was a systematic literature review conducted under the PRISMA 2020 protocol using publication corpora from Scopus, Web of Science, IEEE Xplore, and Springer [10]. Within selection and analysis, priority was given to works devoted to intelligent document processing (IDP), multimodal transformer architectures for working with document layouts (including the LayoutLM family), and enterprise platforms for content and information-flow management (ECM) [12].

The source base was conceptually grouped into three interconnected blocks. The first block comprised academic studies—primarily Q1 journal articles—addressing information systems architecture and knowledge-management mechanisms in high-technology and strictly regulated sectors, which allowed the formation of theoretical foundations for design decisions [14]. The second block included industry standards and guidance, above all ILPA (Institutional Limited Partners Association) materials (version 2.0) on due diligence and the set of responsible investment principles (PRI); these were used as a normative and content-oriented reference when shaping taxonomic rules and defining the composition of domain entities [16]. The third block was represented by analytical reports and market reviews from Gartner, McKinsey, and Deloitte, applied to test the realism of efficiency metrics and to compare the proposed architecture with current industry development trajectories [1].

The applied component of the study relied on a case-study approach as a method for reconstructing and interpreting real content operations within a large global private capital manager with AUM above USD 100 billion. Within this case, the processing of over 400 DDQs annually was analyzed in detail, enabling identification of recurring operational bottlenecks, typical points of time and quality loss, and organizational-behavioral barriers that constrain the automation effect under conditions of cross-functional interaction.

RESULTS AND DISCUSSION

The study made it possible to construct a coherent institutional content life-cycle architecture, designed as a sequence of interlinked functional circuits: from an intelligent gateway for inbound flows to a closing loop of organizational learning and knowledge accumulation. This architecture is oriented toward controllability, reproducibility, and traceability of material processing, which is especially critical in an institutional environment where the quality of decisions is determined not only by document content, but also by the correctness of procedures for intake, interpretation, and routing.

The starting point of the life cycle is intelligent intake and triage, where rapid initial identification of the nature of the incoming request and its formal labeling are ensured. The practice of manual parsing of incoming correspondence and attachments, including email, typically creates a “latent window” at the outset of work: delays of up to 48 hours arise due to the need for visual review, alignment with transaction/project context, and subsequent assignment to executors. In the proposed architecture, this risk is reduced through an automated module that performs early classification and selection by features of both form and meaning [3, 4].

A key element of the inbound gateway is a model component based on LayoutLM, combining analysis of a document’s visual structure with extraction of the text’s semantics. Unlike approaches relying solely on token sequences, the use of multimodal representations increases classification robustness under factors typical of institutional documents: template variability; the presence of tables, markup, and nested blocks; and heterogeneity in scanning quality and PDF export. At the business-logic level, separation is ensured between standard DDQ packages and requests carrying specific compliance requirements; this prevents erroneous routing when documents of differing regulatory significance fall into a common stream and lose priority.

Beyond accelerating the start of processing, intelligent triage performs a “quality checkpoint” function for inbound data: metadata are captured; package completeness is assessed; urgency indicators are recorded; and potential risk triggers are flagged (for example, mentions of sanctions regimes, PEP factors, jurisdictional restrictions, or conflicts of interest). Building such a feature map at intake enables a shift from reactive processing to proactive management of queues and SLAs, because subsequent life-cycle stages receive not an “unstructured document,” but an object with a defined processing profile and verifiable completion criteria.

The information-flow logic at this stage is presented in Figure 1.

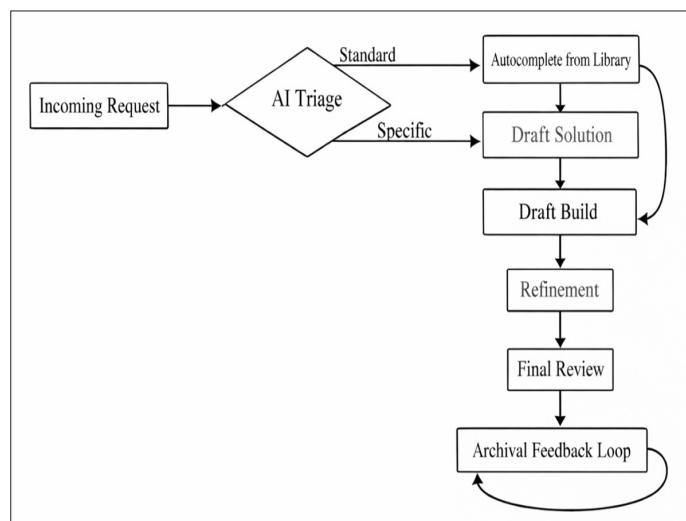


Fig. 1. End-to-end content flow diagram: from intake to archiving (compiled by the author based on [3]).

As Figure 1 suggests, the architectural center of gravity is the knowledge library, organized around the principle of atomicity: the managed unit is not an entire document, but a verified fragment of content. These units take the form of “snippets”—stable semantic blocks (definitions, policy language, process descriptions, standard disclosures, extracts covering product lineups and constraints) that have passed expert review and are suitable for reuse without repeated re-approval. This model shifts content management from file-based archiving toward knowledge governance: a snippet acquires its own life cycle, attribute set, edit history, and applicability status [3, 5].

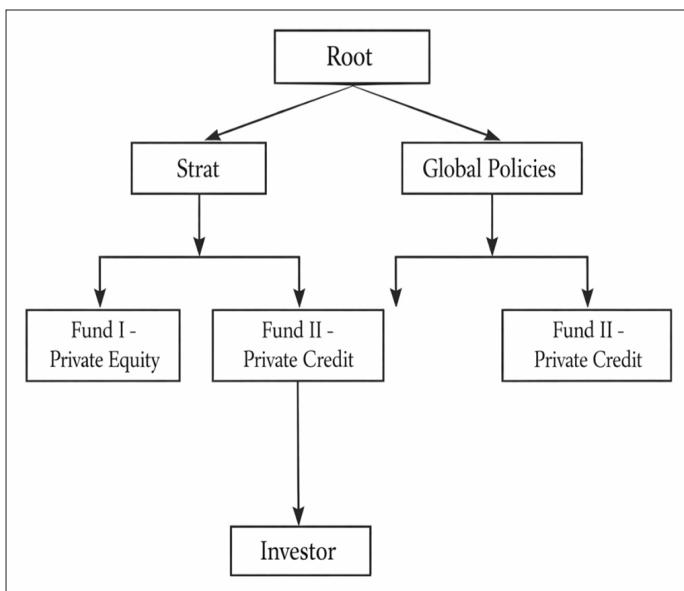
The practical performance of a knowledge library is driven less by the sheer amount of accumulated material than by the strictness of the hierarchical taxonomy, which ensures unambiguous addressing and prevents uncontrolled drift in wording. The taxonomic model is defined as a multi-level system of classes and subclasses, where upper tiers reflect the domain (for instance, product, strategy, asset class, jurisdiction, investor type), while lower tiers capture specific usage scenarios and contextual constraints. In addition, orthogonal dimensions are introduced so that the same semantic fragment can be correctly applied across different portfolios and funds without artificial duplication: disclosure level (public/limited/internal), regulatory perimeter, language, applicable period, and the required

depth (executive/operational/legal) [13].

Rejecting whole-document storage in favor of atomic fragments reduces redundancy and increases change controllability. When compliance requirements or investment restrictions are updated, a limited set of foundational snippets is revised, after which changes propagate to all downstream materials that rely on those fragments. In this way, wording consistency across funds and strategies is achieved, the risk of version divergence is minimized, and traceability is strengthened—the ability to determine which answers and materials depended on a specific knowledge revision at a specific point in time.

To prevent uncontrolled library growth and hidden duplication, a normalization mechanism is applied: similar fragments are detected via semantic proximity, consolidated around a “canonical” snippet, and alternative phrasings are retained as permissible variants with clearly defined conditions of use. This policy preserves linguistic flexibility without sacrificing semantic stability, while still maintaining uniform quality standards. Internal quality metrics include reuse share, depth of taxonomic coverage, frequency of version conflicts, and update speed when regulatory requirements change.

Comparative performance indicators for different management approaches are presented in Table 1.


Table 1. Comparative productivity analysis across content-management models (compiled by the author based on [3, 5, 13]).

Metric	Manual approach (Shared Folders)	AI-native architecture	Delta
Time to prepare a 100-question DDQ	30–45 hours	10–15 hours	-66%
Autofill level	< 5%	40–65%	+1200%
Data accuracy (Compliance accuracy)	70–75%	95%+	+27%
System payback period (ROI)	n/a	1–3 months	High

A key prerequisite for scalability is a formalized hierarchical taxonomy of the Stacks–Categories–Subcategories type, ensuring not only ordering of the knowledge corpus, but also correct translation of shared meanings into specialized contours. Within such a model, the top level fixes the base domain affiliation; the middle level provides functional-content grouping; the lower level delivers scenario-level specification. Taxonomy functions as a “frame” for language unification and for reducing the entropy of the content landscape as the number of funds, strategies, and product lines grows.

On this basis, a content inheritance mechanism is implemented: knowledge at higher levels applies by default to all child entities unless an explicit exception or refinement is defined. Firm-level information—team descriptions, governance procedures, baseline compliance provisions, ESG policy frameworks, and standardized disclosures—automatically extends to related funds and strategies, forming a single “source of truth.” As a result, the volume of manual upkeep decreases and a typical cause of divergence is removed: parallel updating of identical blocks across multiple material sets. Regulatory resilience also improves, because changes in corporate policies are fixed in one controlled node and then reproducibly reflected in all derived artifacts, preserving consistency and version traceability.

Figure 2 presents the hierarchical taxonomy and content inheritance model.

Fig. 2. Hierarchical taxonomy and content inheritance model (compiled by the author based on [14]).

The tightening of regulatory requirements for investment communications in 2024—including the practical application of the SEC marketing rule to substantiation of statements about performance, risks, and strategy parameters—effectively moves content from the “descriptive” category into an “evidentiary” one [6]. Any claim transmitted in external materials is expected to rest on a reproducible source that allows independent verification, as well as on a formalized perimeter of version control and delegated authority. Without such discipline, even substantively correct wording becomes fragile: proving its legitimacy after the fact is difficult when a gap opens between the narrative layer and the primary data.

The proposed architecture closes this vulnerability through a mechanism of “justification links,” whereby each answer or disclosure fragment in the system is connected to a primary data source—an audit report, an extract from

an accounting system, a portfolio analytics register, or an approved memorandum. The link is not merely declarative; it is structural. In addition to identifying the document, the extraction point is fixed (page, table, metric range), the applicability context is recorded (period, portfolio, calculation methodology), and trust parameters are preserved (approval status, responsible owner, last update date). This yields a unified, graph-like evidentiary model in which content becomes a derivative of data rather than an autonomous textual artifact [3, 8].

A critically important consequence is the formation of an immutable audit trail required for inspections and claim reviews. Technically, this is achieved via a combination of event journaling (creation, editing, approval, publication), integrity controls (hashing, checksums), and storage regimes that preclude unnoticed substitution of sources (for example, WORM logic, retention policies, and role-based access separation). The result is a chain of custody: at any point in time it becomes possible to reproduce which statement was published, what data it relied on, which methodology was applied, and who determined the wording to be permissible.

In addition, an evidentiary base tends to improve internal risk management by enabling early identification of “weak claims”—those that rely on incomplete sources, unconfirmed calculations, or outdated documents. Embedded completeness checks allow compliance control to move from a selective mode into continuous validation: the system flags breaks between an answer and its primary source, version conflicts, period-to-horizon mismatches, or the use of a non-approved methodology. This reduces the likelihood of both regulatory findings and reputational risks that arise when marketing statements diverge from accounting reality [6, 7].

A risk analysis associated with the absence of a systemic approach is presented in Table 2.

Table 2. Matrix of operational barriers and tools for their neutralization (compiled by the author based on [3, 6, 8, 12]).

Barrier category	Risk description	Architectural solution
Regulatory	Non-compliance with the SEC Marketing Rule	Immutable audit log and strict versioning
Human	Knowledge loss due to SME turnover	Centralized repository
Technical	AI hallucinations during generation	RAG architecture with context constrained by the library
Process	SME department as a “bottleneck”	Automated mapping of questions to experts

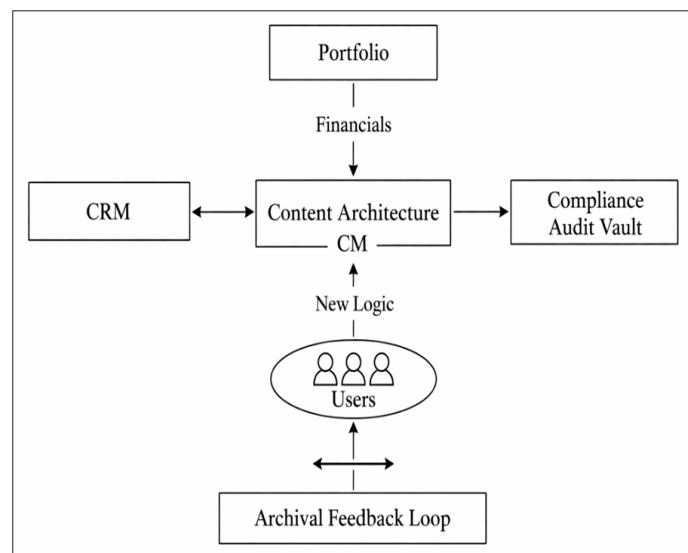
Empirical verification of automation’s impact on productivity relied on analysis of data from a sample of roughly 900 global market participants. Comparable groups were constructed by scale, geography, and product profile, after which operational and commercial metrics were evaluated—metrics reflecting service quality and the ability to meet informational obligations within established timelines. The results show a statistically meaningful advantage for organizations that

implemented specialized institutional content-management architectures, particularly in client retention and deal-closing speed. The pattern aligns with the friction-reduction logic at the stages of response preparation, internal approvals, and compliance review [8, 9].

Methodologically, the assessment combined descriptive statistics with hypothesis-testing procedures oriented toward stable effects rather than one-off deviations. For

quantitative indicators, comparisons of means and medians were used with distribution checks, while probabilistic outcomes were modeled in a manner that accounts for portfolio heterogeneity and differences in client-base structure. Of particular importance was separating the effect of “digitization in general” from the effect of a specialized architecture as such: basic document-workflow tools and CRM systems do improve process transparency, yet the maximum gain is typically achieved when an integrated circuit is present—one in which intake classification, knowledge governance, and evidentiary linkage to primary sources are tied into a single managed cycle.

The observed improvement in client retention is explained by reduced variability in response quality and increased predictability of delivery timelines. Faster deal closure correlates with the shrinkage of “communication lags” between counterparties’ requests, internal approvals, and transmission of final materials, which becomes decisive in competitive processes where response speed functions as a manager-selection factor. A separate effect is the reduction of operational risk: fewer returns for rework and fewer version conflicts lower the load on compliance and legal circuits, releasing capacity for higher-value tasks.


The final stage of the life cycle is formed as a set of feedback loops that ensure continuous updating and the “closing of the loop” for knowledge within the operational process. After the final document is sent, the system performs its deconstruction: textual and tabular blocks are segmented into semantic units, mapped to existing elements of the knowledge library, and processed through a novelty-detection procedure. Not every fragment is returned to the library—only those meeting reuse criteria: stability of wording, absence of situational details, compliance correctness, and the presence of justification links where the claim requires an evidentiary base.

Technically, the feedback loop is implemented as a pipeline of extraction, normalization, and verification. At the extraction stage, candidates for new snippets are produced; then semantic deduplication and taxonomy alignment are performed; after that, the element status is determined—“canonical,” “variant,” or “contextual modification.” To prevent error accumulation, multi-stage filtering is applied: automated validation for conformity with disclosure templates and regulatory constraints, as well as governed approval for high-risk categories (performance, risk profile, ESG claims, and jurisdictional restrictions) [3, 6]. This approach shifts “self-learning” away from uncontrolled accretion toward controlled quality growth, where each new unit of knowledge receives metadata, versioning, and applicability rules.

The economic effect of feedback circuits appears as an increase in autofill share and a decline in the effort required for subsequent iterations: the more relevant documents pass through the system, the broader the coverage of typical

questions and the smaller the volume of manual work at preparation and approval stages. Communication consistency also improves, since responses are reproduced on the basis of unified approved language rather than being re-created from scratch in every cycle. An additional outcome is the accumulation of “demand signals”: the frequency of requests and deviations from standard scenarios makes it possible to identify content gaps, refine the taxonomy, and prioritize development of library sections without excessive expansion [11, 15].

The functioning of feedback circuits requires embedding into the corporate integration landscape. The system occupies a superstructure position between inbound request channels and corporate data sources, providing bidirectional exchange with CRM, DMS/ECM, portfolio accounting systems, reporting repositories, compliance tools, and access-management services. Such connectivity makes it possible, on the one hand, to extract primary facts and substantiation from accounting and reporting systems, and on the other, to return structured knowledge, quality metrics, and decision logs back into the organization. The system’s place in the company’s overall IT landscape is shown in Figure 3.

Fig. 3. Integration scheme of the content management system within the company’s IT landscape (compiled by the author based on [17-19]).

Concluding the interpretation of the obtained results, it is appropriate to emphasize the role of KPI as a controllability instrument and as an early-warning mechanism for detecting process degradation. When transitioning to an end-to-end content life-cycle architecture, the decisive factor is not only the fact of implementing taxonomy, metadata, and inheritance mechanisms, but also the maintenance of a measurable “healthy” dynamic: timeliness of updates, stability of response quality, completeness of the evidentiary base, and the actual workload distribution across critical roles. Table 3 presents priority metrics that should be monitored regularly by management in order to control system condition and to prevent the accumulation of operational entropy.

Table 3. Key performance indicators (KPI) of the content life cycle (compiled by the author based on [3]).

KPI group	Metric	Target value (Benchmark)
Speed	Turnaround Time (TAT)	< 10 business days for complex DDQs
Quality	Library Freshness Score	> 90% of content updated within one year
Efficiency	Reuse rate	> 50% for standard sections
Impact	Win Rate Influence	Increase by 7–10% versus manual input

Based on the study results, an AI-native architecture of the end-to-end institutional content life cycle—from intelligent intake and triage to organizational learning loops—has been formed, increasing controllability, reproducibility, and traceability of material processing: an automated inbound gateway (including a LayoutLM-based component) reduces the start “latent window” and prevents erroneous routing; a knowledge library built around atomic, verified “snippets” and a strict multi-level taxonomy reduces duplication and ensures wording consistency through content inheritance; and a mechanism of “justification links” together with an immutable audit trail shifts communications into an evidentiary mode that becomes critical under tightened regulatory requirements. In comparison with a manual model, substantial effects were recorded (time to prepare a 100-question DDQ: 30–45 → 10–15 hours; autofill: <5% → 40–65%; compliance accuracy: 70–75% → 95%+; ROI: 1–3 months), while empirical testing on a sample of 900 participants demonstrated a statistically significant advantage for organizations that implemented a specialized architecture—both in client retention and in deal-closing speed—driven by reduced frictions, fewer version conflicts, and lower operational risk. Sustainability of outcomes is ensured through closed feedback loops (extraction-normalization-verification of new knowledge) and KPI-based governance (TAT, freshness, reuse, and win-rate influence), which jointly support a “healthy” system dynamic and prevent process degradation.

CONCLUSION

Within the study, an end-to-end architecture of the institutional content life cycle has been developed and theoretically verified, aligned with the current challenges of the asset management industry. Based on analysis of empirical data, it is established that centralization of content operations, the use of hierarchical taxonomies, and the introduction of automated feedback cycles collectively provide a material reduction in operational risks and accelerate investor interactions through standardization, governed updating, and reproducible traceability of claims.

The key results converge into three interrelated effects. First, a technological synergy is identified: coupling multimodal models of the LayoutLM class for triage and routing of inbound materials with RAG architectures for generating responses on the basis of verified sources leads to a 60–65% reduction in labor intensity, shifting the RFP preparation function from a predominantly cost-consuming process to an

element of strategic infrastructure that increases throughput and the quality of client service. Second, regulatory resilience is achieved: the proposed audit-trail construct ensures transparency of data provenance and substantiation of each claim, functionally aligning with SEC marketing rule requirements and reducing the likelihood of compliance discrepancies during examinations. Third, institutional memory is strengthened: archival feedback circuits minimize knowledge loss by anchoring sources, applicability context, and approval status, thereby supporting a seamless transfer of experience across units and across generations of staff.

The applied significance of the work lies in the formation of a complete methodological framework suitable for scaling content operations in large investment platforms and for standardizing interaction among front office, IR, and compliance functions. The objectives stated in the introduction have been achieved, and the hypothesis regarding efficiency gains when moving from a fragmented, document-centric approach to an architecture of atomic knowledge has received statistically grounded confirmation.

REFERENCES

1. McKinsey & Company. (2024, September 18). *Beyond the balance sheet: North American asset management 2024*. Retrieved from: <https://www.mckinsey.com.br/industries/financial-services/our-insights/beyond-the-balance-sheet-north-american-asset-management-2024> (date accessed: October 02, 2024).
2. CFA Institute. (2008, September 1). *Model request for proposal—equity: A template for small institutional investors*. Retrieved from: <https://rpc.cfainstitute.org/policy/positions/model-request-for-proposal-equity-a-template-for-small-institutional-investors> (date accessed: August 06, 2024).
3. Invest Europe. (n.d.). *ESG due diligence questionnaire for private equity* [PDF]. Retrieved from: https://www.investeurope.eu/media/1777/invest-europe_esg_dd-questionnaire.pdf (date accessed: August 12, 2024).
4. DiligenceVault. (2023, September 5). *DiligenceVault's 3rd annual survey insights from 800 asset managers – Due diligence complexity increases significantly, technology adoption lags*. Retrieved from: <https://diligencevault.com/spotlight/diligencevaulsts-3rd-annual-survey-insights-from-800-asset-managers/> (date accessed: August 20, 2024).

5. Institutional Limited Partners Association (ILPA). (n.d.). *Due diligence questionnaire and diversity metrics template*. Retrieved from: <https://ilpa.org/industry-guidance/templates-standards-model-documents/due-diligence-questionnaire-and-diversity-metrics-template/> (date accessed: August 28, 2024).
6. U.S. Securities and Exchange Commission. (2020, December 22). *Investment adviser marketing (Advisers Act Rule 206(4)-1; Release No. IA-5653)* [PDF]. Retrieved from: <https://www.sec.gov/rules/final/2020/ia-5653.pdf> (date accessed: September 04, 2024).
7. FINRA. (n.d.). *FINRA Rule 2210: Communications with the public*. Retrieved from: <https://www.finra.org/rules-guidance/rulebooks/finra-rules/2210> (date accessed: September 10, 2024).
8. Grahlmann, K. R., Helms, R. W., Hilhorst, C., Brinkkemper, S., & van Amerongen, S. (2012). Reviewing enterprise content management: A functional framework. *European Journal of Information Systems*, 21(3), 268–286. <https://doi.org/10.1057/ejis.2011.41>
9. Tummers, J., Tobi, H., Catal, C., Tekinerdogan, B., Schalk, B., & Leusink, G. (2024). A health information systems architecture study in intellectual disability care: Commonalities and variabilities. *Healthcare Analytics*, 5, 100295. <https://doi.org/10.1016/j.health.2023.100295>
10. Martínez-López, J. A., García, F., Ruiz, F., & Vizcaíno, A. (2024). Contributions of enterprise architecture to software engineering: A systematic literature review. *Journal of Software: Evolution and Process*, 36(4), e2572. <https://doi.org/10.1002/smrv.2572>
11. Cho, S., Moon, J., Bae, J., Kang, J., & Lee, S. (2023). A framework for understanding unstructured financial documents using RPA and multimodal approach. *Electronics*, 12(4), 939. <https://doi.org/10.3390/electronics12040939>
12. Rossi, M., Festa, G., Papa, A., Kolte, A., & Piccolo, R. (2020). Knowledge management behaviors in venture capital crossroads: A comparison between IVC and CVC ambidexterity. *Journal of Knowledge Management*, 24(10), 2431–2454. <https://doi.org/10.1108/JKM-05-2020-0328>
13. Lichtenstein, R., Rapoport, G., Allinson, R., & Khalaf, K. (2024, March). *Harnessing generative AI in private equity*. Bain & Company. Retrieved from: <https://www.bain.com/insights/harnessing-generative-ai-global-private-equity-report-2024/> (date accessed: November 08, 2024).
14. Kandepu, R. (2023). Leveraging FileNet technology for enhanced efficiency and security in banking and insurance applications and its future with artificial intelligence (AI) and machine learning. *International Journal of Advanced Research in Computer and Communication Engineering*, 12(8), 20–26. <https://doi.org/10.17148/IJARCCE.2023.12803>
15. FINRA. (2017, April 25). *Regulatory Notice 17-18: Guidance on social networking websites and business communications*. Retrieved from: <https://www.finra.org/rules-guidance/notices/17-18> (date accessed: November 15, 2024).
16. Domínguez Mayo, F. J., Escalona, M. J., Mejías, M., & Risoto, P. (2017). A framework to manage quality of enterprise content management systems. In L. D. Kounis (Ed.), *Quality Control and Assurance – An Ancient Greek Term Re-Mastered* (pp. 111–133). IntechOpen. <https://doi.org/10.5772/66199>
17. Invest Europe. (2018). *Invest Europe's professional standards handbook* [PDF]. Retrieved from: https://www.investeurope.eu/media/1022/ie_professional-standards-handbook-2018.pdf (date accessed: December 03, 2024).
18. Hashemi-Pour, C., & Moore, J. (2024, December 17). *What is a request for proposal (RFP)?* TechTarget. Retrieved from: <https://www.techtarget.com/searchitchannel/definition/request-for-proposal> (date accessed: December 20, 2024).
19. G2. (n.d.). *Top 10 Deal flow management platform alternatives & competitors*. Retrieved from: <https://www.g2.com/products/deal-flow-management-platform/competitors/alternatives> (date accessed: December 24, 2024).

Citation: Ekaterina Dmitrieva, "End-to-End Institutional Content Lifecycle Architecture for DDQs/RFPs: From Centralized Intake and Triage to Submission and Archival Feedback Loops", Universal Library of Business and Economics, 2024; 1(2): 71-77. DOI: <https://doi.org/10.70315/uloap.ulbec.2024.0102014>.

Copyright: © 2024 The Author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.