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The prediction of software defects is now an indispensable part of both the quality assurance systems of the modern world 
providing an opportunity to detect those modules that tend to malfunction and enhance the reliability of the systems. This 
study offers a machine learning (ML) based framework, which uses the NASA JM1 dataset with 10,885 records and 22 
features, to construct an effective prediction model. Handling of missing values, outliers, and normalization is carried out 
to make sure that the data is consistent. Adaptive Sequential K-Best (ASKB) is applied to discriminate the most pertinent 
features to improve the Minority Oversampling by Synthetic Data (MOSD), and model performance is employed to balance 
the classes by providing real-life defect-prone samples. The reason why a Random Forest (RF) classifier is used is its strong 
ability to deal with high-dimensional, complex data. The performance of model is rigorously tested utilizing Accuracy, Recall, 
Precision,  and F1-score and yields 98.1, 98.7, 97.8 and 98.2 respectively. These pointers confirm the effectiveness of the 
proposed structure in the achievement of plausible predictions. Comparative analysis indicates that Trade-off of accuracy 
and generalization is better in Random Forest than in Naive Bayes, Neural Networks and SVM. The study will enhance the 
advancement of defect prediction practices, providing a scalable and explainable solution that enables proactive quality 
management. Further research is underway to extend this framework to hybrid and deep learning (DL) models, thereby 
broadening its applicability.

Keywords: Software Defect Prediction, Machine Learning, Random Forest, MOSD, Adaptive Sequential K-Best (ASKB), 
Software Quality Assurance, Predictive Analytics.

Abstract

Introduction
Quality Assurance (QA) is a characteristic of modern software 
engineering that ensures systems meet not only technical 
needs but also offer reliability, maintainability, and usability 
in various application fields. It consists of processes[1], 
established practices and advanced methodologies, 
aimed at preventing, detecting and managing the issues 
in the software development life cycle [1]. Monitoring 
development processes, QA ensures trust in the program’s 
products, minimizes deployment risks, and enhances 
adaptation to changing needs. A healthy QA practice, from 
the business perspective, reduces the cost of developing and 
maintaining the product by a significant margin, increases 
the efficiency of operations and also allows the product to 
reach the customer, in time [2][3]. At the same time, defect-
free software provision will increase customer satisfaction, 
create user confidence, and provide an organization with a 
competitive advantage in the constantly challenging market.

Despite this, it remains in the centre, and software defects 

remain among the most enduring issues of complex 
systems. Error of coding is likely to result in defects [4], 
poor architecture, incompatibility or partial specifications 
of the requirements, and the result may have insignificant 
breakdowns up to disastrous system crashes [5][6]. A single 
defect in extremely sensitive sectors, such as the healthcare 
industry, aerospace industry, defense, and finance, may result 
in financial loss, negative publicity, and, worst of all, loss of 
human life. Some traditional defect detection methods, such 
as manual testing, unit testing, regression testing, and peer 
code reviews, are not useless [7]. However, they are often 
labor-intensive, subjective, and incapable of managing the 
size and complexity of modern software development. It is 
this limitation, which underscores the urgency of scalable and 
intelligent systems of defect prediction that may continue to 
satisfy the growing demands of software quality [8].

Machine Learning (ML) is a versatile and efficient, data-
driven approach to better defect prediction and performance 
analysis within QA over the recent years [9][10]. With the 
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assistance of ML algorithms, it is possible to use a historical 
repository of defects and software metrics to identify 
patterns and relationships that may not be evident to human 
analysts automatically. The labels: Predictive models can be 
employed to identify modules or components as non-defect-
prone or defect-prone at a very early stage of development, 
thereby making it feasible to take proactive measures to 
minimize the cost of debugging, the release cycle, and ensure 
on-time product delivery [11]. Furthermore, in addition to 
the improved accuracy of prediction, ML also enables the 
detailed analysis of performance, allowing organizations 
to evaluate the strengths and weaknesses of implemented 
models and optimize their QA policies accordingly [12].

Code size, cyclomatic complexity, depth of inheritance, 
and design features will give useful information about the 
probability of defects [13][14]. These quantifiable properties 
encapsulate the complexity and form of software systems and 
can be useful in predicting regions with a high probability 
of error. ML analysis of such features, when used properly, 
guides organizations in enhancing their quality assurance 
processes, thereby becoming more proactive, reliable, and 
cost-efficient.

Motivation and Contribution of the Paper
The immediate need to improve software quality through 
accurate defect forecasting prompted the performance of 
this research. Software bugs can lead to failures, financial 
loss, and damage to reputation, and it is essential to consider 
early detection as a means of successful quality assurance. 
Traditional approaches, such as manual inspection or rule-
based methods, are often time-consuming, subjective, and 
inadequate for complex software systems. Data-driven 
machine learning techniques provide a promising alternative 
by automating defect prediction, identifying high-risk 
modules early, and enabling proactive measures to enhance 
software reliability and reduce development costs. This 
study’s main contributions are outlined below:

Utilized the NASA JM1 dataset, including 10,885 records •	
and 22 features, to ensure a comprehensive analysis of 
software modules.

Implemented stringent data pretreatment measures •	
to enhance model reliability, such as handling 
missing values, detecting and removing outliers, and 
standardising.

The most informative qualities were retained for •	
defect prediction after implementing ASKB for feature 
selection.

To make sure that modules prone to defects are fairly •	
represented, we used MOSD to address class imbalance.

Developed a Random Forest-based predictive framework•	  
capable of accurately sorting software components 
according to their vulnerability to bugs.

Conducted thorough evaluations of models utilizing •	
F1-score, recall, accuracy, and precision to guarantee 

practical application in software quality assurance and 
robust assessment.

Justification and Novelty of the Paper

The justification for this work is rooted in the urgent 
requirement to enhance software reliability by accurately 
identifying defect-prone modules before deployment. 
Traditional inspection and rule-based methods are often 
inefficient and subjective, particularly in large-scale projects. 
This research introduces novelty by integrating Adaptive 
Sequential K-Best (ASKB) for dynamic feature selection 
with MOSD for synthetic balancing, ensuring meaningful 
attributes and fair class representation. The combined 
framework, implemented using Random Forest, not only 
demonstrates improved performance but also enhances 
interpretability and efficiency. Unlike prior studies limited to 
single techniques, this work presents a holistic, data-driven 
approach tailored for robust software defect prediction 
(SDP).

Structure of the Paper

The framework of the study is presented in this section, 
which identifies research gaps and reviews related work. The 
approach, including the steps for preprocessing and designing 
the classifier, is detailed in Section III. Section IV describes the 
outcomes of the experiments and the comparisons. Section V 
is the final part of the work and provides directions to further 
research and Section VI provides the list of sources.

Literature Review 
ML, feature optimization and class imbalance management 
are used in the literature on software defect prediction. 
Accuracy is high and scalability, generalization, real-time 
applicability and hybrid model integration are limited.

Manjula and Florence (2019) recommend hybrid approach 
based on the idea of genetic algorithms (GAs)  and deep 
neural networks (DNNs) classification feature optimisation 
to predict the early software defects. The technique uses a 
refined version of GA able to construct chromosomes and 
calculate fitness functions, and a DNN strategy that uses an 
adaptive auto-encoder to more accurately represent software 
functionality. Experiments and case studies demonstrate 
the enhanced efficiency carried out on the PROMISE data 
in MATLAB.  By 97.96% accuracy in PC3 dataset, 98.00% 
accuracy in PC4 dataset, 97.59% accuracy in CM1 dataset, 
97.82% accuracy in the KC1 dataset, Compared to the existing 
approaches, the proposed one is superior [15]

Lingden et al. (2019) present a solution to the unequal 
representation of classes in datasets applied in software 
defect prediction (SDP). The model is comprised of a 
correlation feature selection (CFS) method and a modified 
undersampling method.  The proposed model raised the 
precision of F1-score to 0.52-0.96 to achieve the optimal F1-
score percentage of 0.96% close to 100 percent using ten 
open source project datasets. This strategy will address the 
fault prediction and reduce the processing time by enhancing 
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the overall outputs of the existing classification systems.  It 
is believed that SDP is more predictable, and processing time 
efficient due to the emphasis that the model places on data 
balance [16]

Nascimento et al. (2018) discuss software testing difficulties, 
principles, and the lack of a comprehensive test.  Using Kaizen 
Programming (KP), which automatically identifies high-
quality nonlinear combinations of database characteristics, 
a method is suggested to detect problematic modules.  In 
feature engineering, this takes the place of humans.  Testers 
were able to uncover 216% more faults using the new 
features compared to random module selection, according to 
the study, which used a NASA open dataset with more than 
9500 modules.  Here we see a 1% improvement over the first 
features [17]

Kumar, Tirkey and Rath (2018) explored ways to identify 
potentially problematic modules in software by including 
fault prediction models into the design process of SDLC. 
A model was created by combining an extreme ML with 
different kernel approaches with twenty different kinds of 
software measurements. Case studies from thirty object-
oriented software systems were utilised to assess the 
model’s efficacy using a testing approach that prioritised 
efficiency and cost. For projects with a low (47.28%), middle 
(39.24%), or high (25.72%) percentage of faulty classes, the 
results showed that the fault prediction model was effective.  
They also used nine feature selection methods to weed out 
superfluous metrics and zero in on the best collection of 
source code metrics for error prediction [18]

Jacob and Raju’s (2017) studied the application of machine 
learning and data mining methodologies for predicting 
software failures in aerospace systems, aiming to mitigate 

the consequences of software faults that can significantly 
endanger human lives and financial assets. The main goal 
of their work was to find the best feature selection and 
classification procedure to use in prediction modelling. They 
established a new hybrid feature selection methodology, 
which yielded a higher fault predictability of approximately 
98 percent, as opposed to 82 percent. Also, the mean Matthew 
Coefficient (MCC) of 0.7-0.9 with an accuracy of between 86-
98% was achieved due to the random subsampling process. 
This research notes that more research is possible on the 
main characteristics contributing to fault prediction with 
the aim of developing aerospace systems with less fault and 
performance [19]

Gupta and Saxena’s (2017) research on software quality 
emphasizes the importance of software quality for users, 
researchers, and software developers. Using measurements, 
they created a model for SBPS, a software bug prediction 
system that can forecast class-wide issues during software 
validation. The Promise Software Engineering Repository is 
used to build the model, together with 14 relevant metrics 
and open-source defect datasets. When compared to other 
classifiers, the Logistic Regression Classifier produces the 
most accurate results.  Separate validations of the Combined 
Dataset and all other validated datasets are used to train and 
test the model. Overall averaged accuracy of the model is 
76.27%, demonstrating its effectiveness in predicting bugs 
in software. [20]

Table I summarizes methodologies, datasets, key findings, 
limitations, and future work, highlighting gaps in dataset 
imbalance handling, fault density sensitivity, model 
generalization, hybrid integration, and real-time efficiency 
for software defect prediction.

Table I. An overview of related research on machine learning-based software defect prediction

Author Methodology Dataset Key Findings Limitations Future Work
Manjula & 
Florence 
(2019)

Deep Neural 
Network (DNN) 
adaptive auto-
encoder and Genetic 
Algorithm (GA) 
for hybrid feature 
optimisation

PROMISE dataset Hybrid approach achieved 
high classification 
accuracy (PC3: 97.96%, 
PC4: 98.00%, CM1: 
97.59%, KC1: 97.82%,); 
improved feature 
representation enhances 
defect prediction

Focused only 
on feature 
optimization; limited 
generalization beyond 
selected datasets; 
computational cost not 
discussed

Extend to other 
datasets and explore 
real-time defect 
prediction; optimize 
computational 
efficiency of GA-DNN 
approach

Lingden et al. 
(2019)

Modified 
undersampling with 
Correlation Feature 
Selection (CFS)

Ten open-source 
project datasets

Class imbalance handling 
improved F1-score (0.52–
0.96); reduced processing 
time for defect prediction

Limited to 
undersampling; impact 
of other imbalance 
handling methods not 
explored

Explore hybrid 
imbalance handling 
techniques; test on 
larger industrial 
datasets

Nascimento et 
al. (2018)

Kaizen 
Programming 
(KP) for automatic 
feature engineering 
and classification

NASA dataset 
(9500+ modules)

New features improved 
detection of defective 
modules by 216% over 
random selection; 1% 
improvement over 
original features

Focused on feature 
engineering only; 
improvement marginal 
in some cases; reliance 
on historical data

Investigate integration 
with deep learning 
models; real-time 
adaptive testing based 
on predictive features
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Kumar, Tirkey 
& Rath (2018)

Elastic Learning 
Machine (ELM) 
using feature 
selection and 
different kernel 
approaches

30 object-oriented 
software systems

Fault prediction effective 
for low to medium faulty 
classes; efficiency: Low: 
47.28%, Medium: 39.24%, 
High: 25.72%; 9 feature 
selection techniques 
evaluated

Performance decreases 
with high fault density; 
threshold-based 
limitation; scalability 
to large datasets not 
addressed

Develop adaptive 
models for varying fault 
distributions; optimize 
feature selection for 
large-scale projects

Jacob & Raju 
(2017)

Hybrid feature 
selection and 
classification; 
random 
subsampling

NASA Lunar space 
system software

Hybrid method improved 
fault prediction accuracy 
(~82%-98%); MCC 
improved (~0.7-0.9)

No single predictive 
model suitable for all 
datasets; aerospace 
focus may limit 
generalizability

Identify domain-
agnostic predictive 
features; explore 
ensemble learning for 
consistent performance 
across datasets

Gupta & Saxena 
(2017)

Logistic Regression-
based Software Bug 
Prediction System 
(SBPS) with metric 
validation

PROMISE datasets Model predicted class-
level bugs with overall 
average accuracy of 
76.27%; validated 14 best 
metrics

Limited accuracy 
compared to advanced 
ML models; only 
logistic regression 
used; fewer datasets

Explore advanced ML 
and hybrid techniques; 
extend model for cross-
project prediction and 
real-time QA

Fig 1. Proposed Methodology for SDP

Methodology
The methodology is designed to build a robust framework for 
predicting software defects and ensuring quality assurance, 
as shown in Figure 1. It employs the JM1 dataset from 
NASA, which consists of 10,885 records and 22 features. 
The first step is data preprocessing, which involves dealing 
with missing values, finding and removing outliers, and 
normalising the data so that features scale consistently. 
Adaptive Sequential K-Best (ASKB) is then applied for 
feature selection to retain the most relevant attributes, while 
MOSD addresses class imbalance for fair representation. 
To facilitate effective learning and validation, the dataset is 
pre-processed in an 80:20 ratio to produce a training set 
and a testing set. Because of its resilience and capacity to 
manage intricate, high-dimensional data, the Random Forest 
classifier was selected.  As a last step in enhancing software 

quality, the trained model is evaluated using F1-score, recall, 
accuracy, and precision. It then labels modules as either non-
defect or defect-prone.

Data Collection

Popular SDP datasets for real-time predictive ground code in 
C include the NASA-created JM1 dataset. It has 22, features, 
10,885 records, and is based on McCabe and Halstead 
metrics including design complexity, volume, difficulty, 
and cyclomatic code lines, as well as Halstead metrics like 
essential lines of code, design complexity, and cruciality. The 
binary target variable signifies whether it has defects (True) 
or not (False). It is highly imbalanced (80.65% defective), and 
has been utilized to test predictive software quality models.

Fig 2. Class Distribution of the Dataset

The bar chart in Figure 2 is distribution of the JM1 dataset, a 
well-known software defect dataset, illustrates a pronounced 
class imbalance. The two classes, labelled ‘0’ and ‘1’, likely 
represent non-defective and defective modules, respectively. 
The visualization shows that class ‘0’ dominates with over 
400 instances, while class ‘1’ has fewer than 50 instances. 
This corresponds to a highly imbalanced distribution, with 
approximately 80.65% of the modules being non-defective 
and only 19.35% being defect-prone. Machine learning 
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models may be biased towards the majority class as a result 
of this imbalance, missing cases from the minority class that 
are more likely to have flaws.

  

Fig 3. Correlation Heatmap of the Dataset

Figure 3 displays a heatmap displaying correlations within 
the JM1 dataset, illustrating the pairwise Pearson correlation 
coefficients among various software metrics. The value of 
the correlation between two attributes is represented by 
each cell, with a color gradient from dark blue (negative 
correlation) to bright yellow (positive correlation). Strong 
positive correlations are observed among metrics like loc, 
v(g), ev(g), and n. Certain metrics, such as defects and locCode, 
also exhibit moderate correlations with complexity-related 
attributes. Conversely, weak correlations are seen between 
some control flow metrics and defects. This visualization 
highlights interdependencies, aiding in feature selection 
and identifying potential multicollinearity in predictive 
modelling tasks for software defect prediction.

Data Preprocessing

An important step in data preparation for predictive 
modelling is cleaning and normalising raw data on software 
defects. Since datasets often contain inconsistencies, noise, 
and imbalanced distributions, pre-processing ensures 
improved quality, reliability, and consistency of the data. 
To improve dataset integrity, the following measures were 
applied:

Missing Values Handling:•	  Incomplete records were 
addressed using mean/mode imputation or KNN-based 
imputation, ensuring no gaps in the dataset.

Outlier Detection and Removal:•	  The Z-score method 
was employed to detect and eliminate abnormal values 
that could distort learning outcomes.

Normalization

Data normalisation is essential to prevent features with 
varying scales from unduly impacting the model [21]. For 
example, a feature like “number of commits” could have a 
much larger range compared to “developer activity,” leading 
to biased learning. To make the features comparable, they 
are usually transformed into the range of 0 to 1 with the 
help of min-max normalization. In order to make sure that 
every feature helps the model learn the same way, this 
normalisation strategy adjusts the magnitude of each feature. 
One is the value of the min-max normalisation Equation.(1) 

      

This is where the original feature, denoted as 𝑥, and its 
minimum and maximum values, 𝑥min and 𝑥max, are 
defined. 

Data Balancing using MOSD

Overcoming the issue of unequal class distribution in 
datasets of software defects Minority Oversampling by 
Synthetic Data (MOSD) method is used, with defect prone 
modules significantly underrepresented by non-defect 
modules. This imbalance usually makes the models used 
in prediction favour the majority category of predictions, 
thereby lowering the accuracy of determining real defects 
[22]. MOSD creates synthetic samples of the minority group, 
by nearest-neighbour-interpolation, with realistic and varied 
defects. With this, the distribution of the datasets is balanced 
and thus the classifier learns the patterns of both classes in 
an effective manner. The result of MOSD application, which 
demonstrates the transition to the balanced dataset instead 
of the imbalanced dataset is presented in Figure 4.

Fig 4. Dataset After Data Balancing

Feature Selection with ASKB

ASKB feature selection technique is a developed technique 
of choosing the most useful features in predicting software 
bugs. It works in an iterative manner, evaluating the 
contribution of every feature with statistical quantities like  
mutual information or chi-square and then dynamic refines 

(1)
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the subset [23]. ASKB lands on key features and discards 
redundant or noisy features by only retention; this minimizes 
the dimensionality and retains the crucial information. This 
increases training efficiency, eliminates overfitting and 
improves classification. In addition, ASKB makes sure that 
the predictive model concentrates on meaningful software 
metrics thus enhancing accuracy and interpretation.

Data Division

There were two sets of data utilised: A training one and a 
testing one. The ratio of the two sets was 80:20. This approach 
increases the model’s generalizability, dependability, and 
fairness by ensuring that it is trained with sufficient data and 
then tested on unknown cases.

Proposed Random Forest Model

To enhance the accuracy of predictions, Bierman developed 
the random forest, an ensemble approach to ML which 
combines the result of several decision trees [24]. As shown 
in Figure 5, the final classification is produced by a majority 
voting system across all decision trees, which are each 
handled as a separate classifier.

Fig 5. Structure of the Random Forest

Here, x_i∈R^M is the feature vector of size M and y_i is the 
associated class label, and the training dataset is comprised 
of N samples.  Each of the T trees in a RF is trained using a 
bootstrap sample D_t, which is created by randomly picking 
N samples from the original dataset with replacement [25]. 
Consequently, some training samples may appear multiple 
times in , while others may not be used at all. Instead of 
taking into account all M features at each divided in a tree, 
a randomly selected subset of m features (m<M) is used to 
identify the best split using an impurity measure, like the 
Gini index, as defined in Equation (2):

Where  denotes the proportion of class k samples at node 
t, and K is the total classes. Each decision tree is permitted 
to grow to its max depth without pruning, ensuring that the 

data is fully partitioned. The last step is for all of the T trees 
to vote on the random forest classifier’s final prediction, 
which can be mathematically expressed in Equation (3)

Where  is what the t-th decision tree’s output for 
input x looks like.

Performance Metrics

Error matrices, another name for confusion matrices, 
summarise prediction results on a classification problem 
and are utilised to assess the efficacy of various model 
approaches [26]. When dealing with a classification problem, 
where the output could fall into more than one category, 
model evaluation takes centre stage. The confusion matrix 
is a popular and straightforward statistic for this purpose. 
It measures the likelihood of four possible outcomes true 
negative (TN), false negative (FN), true positive (TP), and 
false positive (FP).

A TP occurs when both the model’s estimates and the •	
test data are accurate.

FN The model has obtained incorrect estimates while •	
the test data is accurate.

The model’s estimates and test data are both incorrect; •	
this is known as a true negative (TN).

False positives (FPs) occur when the model’s estimated •	
true values are at odds with the test data.

Accuracy: Equation (4) expresses accuracy, often known as 
the categorization rate.

Precision: “Precision” is defined as the ratio of the number of 
accurately detected positive cases to the number of positive 
examples that were anticipated [27]. As shown in Equation 
(5), As decreases the value of FP, precision increases and it 
indicates an example labeled as positive is indeed positive.

Recall: Divide the sum of all actual class observations by the 
number of positively predicted observations to get the recall 
value.  You can find this formula in Equation (6):

F1-Score: When calculating accuracy, this measure 
considers not just recall and precision, but also FP and FN. 
The F-measure is determined by averaging the test’s recall 
and precision using a weighted harmonic mean. As stated in 
Equation (7), this metric has an equation:

The evaluation metrics ensure that the model is performing 
well by providing a thorough assessment of its accuracy, 
reliability, and robustness in making predictions.

(2)

(3)

(4)

(5)

(6)

(7)
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Result Analysis and Discussion 
The effective detection of software defects is critical for 
ensuring high-quality software development, reducing 
maintenance costs, and improving overall system reliability. 
The proposed model was implemented using Python with 
the scikit-learn library for machine learning. This system, 
which runs Windows 11, has an CPU of Intel Core i7, RAM of 
16 GB, and was used for the testing, which offered adequate 
computational power necessary to train and test it. To 
measure the model’s efficacy, we employed Accuracy, Recall 
Precision, and F1-score.  There is a high level of reliability 
in the Random Forest’s defect detection performance, as 
shown in Table II by its 98.1% accuracy, 98.7% precision, 
97.8% recall, and 98.2% F1-score. The results demonstrate 
that the ML algorithms like the RF may be significant in 
ensuring software quality by identifying faulty codes at the 
earliest stage and minimizing the exposure that may arise 
throughout the software program development process.

Table II. Performance Metrics of Random Forest Model for 
Software Defect Prediction

Metrics Random Forest
Accuracy 98.1
Precision 98.7
Recall 97.8
F1-score 98.2

Fig 6. Confusion Matrix for the Random Forest Model

A confusion matrix, a typical visual for testing a classification 
model, is shown in Figure 6.  There are two axes in the matrix; 
one axis represents the True Label (with values of 0 and 1) 
and the other represents the Predicted Label (with values of 
0 and 1). You can see how often the model’s predictions were 
correct in comparison to the actual results in the matrix.  
Class ‘0’ (True Negatives) is shown in the top-left cell with 
494 instances that were correctly identified.  There are 489 
examples of class ‘1’ (True Positives) that were accurately 
classified in the cell located at the bottom-right.  In the top-
right corner, you can see six cases of class ‘0’ being wrongly 
forecasted as ‘1’ (False Positives), while in the bottom-left 
corner, you can see eleven cases of class ‘1’ being wrongly 

predicted as ‘0’ (False Negatives). These off-diagonal cells 
stand for errors. This indicates the model correctly predicted 
983 out of 1000 total cases, demonstrating high accuracy.

Fig 7. ROC Curve for the RF Model

The machine learning model known as the “Random Forest” 
classifier’s Receiver Operating Characteristic (ROC) curve 
is displayed in Figure 7. The FP Rate (x-axis) and the TP 
Rate (y-axis) are plotted on the graph for various threshold 
settings. A solid blue line depicting the Random Forest 
model’s performance. A dashed red line extending from 
(0,0) to (1,1) serves as a baseline, representing a random 
classifier. The blue curve hugs the top-left corner of the plot, 
staying well above the red dashed line. All criteria show that 
the model performs exceptionally well and can differentiate 
between positive and negative classes, as seen by its low 
False Positive Rate and high True Positive Rate.

Comparative Analysis

The comparison of different ML models is vital to identify 
the most effective approach for software defect prediction. In 
this work, Random Forest was evaluated against Naïve Bayes, 
Neural Network, and SVM. As shown in Table III, Naïve Bayes 
achieved good recall (94%) but low accuracy (80.39%). 
Neural Networks achieved greater accuracy (93.64) and poor 
recall (64.61), hence, missed defects. SVM was more precise 
(95.7% and recall (88.7%). Nonetheless, the most accurate 
and the best F1-score were the models based on the Random 
Forest, with 98.1% and 98.2, respectively, making it the most 
trusted tool to predict the software defects.

Table 3. Comparative Performance of Machine Learning 
Models for Software Defect Prediction

Models Accuracy Precision Recall F1-score
NB[28] 80.39 89 94 83
Neural network[29] 93.64 81.56 64.61 72.10
SVM[30] 86 95.7 88.7 91.8
Random Forest 98.1 98.7 97.8 98.2

The framework suggested also outlines the importance of 
the combination of pre-processing, feature selection, and 



Page | 66Universal Library of Engineering Technology

Data-Driven Machine Learning-Based Prediction and Performance Analysis of Software Defects 
for Quality Assurance

class balancing with a RF classifier in improving software 
defect prediction. The approach mitigates data imbalance, 
redundant attributes and noise, and therefore, the model is 
trained on more meaningful and representative data. Relative 
analysis reveals that the framework is more effective than the 
conventional ones, and it is effective in processing complex 
and high-dimensional data. In sum, the research supports 
the hypothesis that ML based prediction can be utilised to 
forecast proactive quality control, minimizing maintenance 
work, and permitting scalable solutions to the problem of 
software reliability management.

Conclusion & Future Work
The ensemble of a carefully designed machine learning 
system that includes preprocessing, feature selection, and 
the class balancing resulted in a great predictive accuracy on 
software defects. To make sure that only the most informative 
features were retained, ASKB was utilized, and MOSD was 
utilized to successfully address class imbalance. Random 
Forest, chosen due to its strength and scalability, gave good 
results with the Accuracy, Recall, Precision, and F1-score 
of 98.1, 98.7 and 97.8 correspondingly. It was shown that 
it was a superior system in relation to Naive Bayes, Neural 
Networks and SVM, and that LiB hypothesis can handle 
high dimensional and complex data, and reliably identify 
defect-prone modules. These results attest to the possibility 
of machine learning in terms of reducing the costs of tests, 
raising the degree of reliability, and, overall, making software 
quality assurance a more effective process. In the future, the 
work will aim at expanding the framework to include hybrid 
and DL models that will have the capability of capturing more 
intricate defect patterns. The presence of explainable AI will 
allow transparency, as the decision-making process will be 
transparent and more explainable; therefore, the approach 
will be more viable to software engineers. In addition, the 
reinforcement of the generalizability will be provided 
through the expansion of the evaluation to cross-project 
and industrial datasets. Finally, it can be incorporated into 
continuous integration and deployment pipelines to carry 
out real time monitoring which would enhance further the 
automation of software quality management and make 
predictive defect detection a continuous process of the 
development life cycle.
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