Research Article

Universal Library of Engineering Technology

ISSN: 3064-996X
Open Access | PP: 59-68
DOI: https://doi.org/10.70315 /uloap.ulete.2022.008

Universal Library Open Access Publications LLC

Data-Driven Machine Learning-Based Prediction and Performance
Analysis of Software Defects for Quality Assurance

Dinesh Rajendran’, Aniruddha Arjun Singh Singh?, Vaibhav Maniar3, Vetrivelan Tamilmani* Rami Reddy
Kothamaram?®, Venkata Deepak Namburi®

!Coimbatore Institute of Technology, MSC. Software Engineering.

2ADP, Sr. Implementation Project Manager.

30klahoma City University, MBA / Product Management.

*Principal Service Architect, SAP America.

SCalifornia University of Management and Science, MS in Computer Information Systems.
SUniversity of Central Missouri, Department of Computer Science.

The prediction of software defects is now an indispensable part of both the quality assurance systems of the modern world
providing an opportunity to detect those modules that tend to malfunction and enhance the reliability of the systems. This
study offers a machine learning (ML) based framework, which uses the NASA JM1 dataset with 10,885 records and 22
features, to construct an effective prediction model. Handling of missing values, outliers, and normalization is carried out
to make sure that the data is consistent. Adaptive Sequential K-Best (ASKB) is applied to discriminate the most pertinent
features to improve the Minority Oversampling by Synthetic Data (MOSD), and model performance is employed to balance
the classes by providing real-life defect-prone samples. The reason why a Random Forest (RF) classifier is used is its strong
ability to deal with high-dimensional, complex data. The performance of model is rigorously tested utilizing Accuracy, Recall,
Precision, and F1-score and yields 98.1, 98.7, 97.8 and 98.2 respectively. These pointers confirm the effectiveness of the
proposed structure in the achievement of plausible predictions. Comparative analysis indicates that Trade-off of accuracy
and generalization is better in Random Forest than in Naive Bayes, Neural Networks and SVM. The study will enhance the
advancement of defect prediction practices, providing a scalable and explainable solution that enables proactive quality
management. Further research is underway to extend this framework to hybrid and deep learning (DL) models, thereby
broadening its applicability.

Keywords: Software Defect Prediction, Machine Learning, Random Forest, MOSD, Adaptive Sequential K-Best (ASKB),
Software Quality Assurance, Predictive Analytics.

INTRODUCTION

Quality Assurance (QA) is a characteristic of modern software
engineering that ensures systems meet not only technical
needs but also offer reliability, maintainability, and usability
in various application fields. It consists of processes[1],
established practices and advanced methodologies,
aimed at preventing, detecting and managing the issues
in the software development life cycle [1]. Monitoring
development processes, QA ensures trust in the program’s
products, minimizes deployment risks, and enhances
adaptation to changing needs. A healthy QA practice, from
the business perspective, reduces the cost of developing and
maintaining the product by a significant margin, increases

remain among the most enduring issues of complex
systems. Error of coding is likely to result in defects [4],
poor architecture, incompatibility or partial specifications
of the requirements, and the result may have insignificant
breakdowns up to disastrous system crashes [5][6]. A single
defect in extremely sensitive sectors, such as the healthcare
industry, aerospace industry, defense, and finance, may result
in financial loss, negative publicity, and, worst of all, loss of
human life. Some traditional defect detection methods, such
as manual testing, unit testing, regression testing, and peer
code reviews, are not useless [7]. However, they are often
labor-intensive, subjective, and incapable of managing the
size and complexity of modern software development. It is

the efficiency of operations and also allows the product to
reach the customer, in time [2][3]. At the same time, defect-
free software provision will increase customer satisfaction,
create user confidence, and provide an organization with a
competitive advantage in the constantly challenging market.

Despite this, it remains in the centre, and software defects

this limitation, which underscores the urgency of scalable and
intelligent systems of defect prediction that may continue to
satisfy the growing demands of software quality [8].

Machine Learning (ML) is a versatile and efficient, data-
driven approach to better defect prediction and performance
analysis within QA over the recent years [9][10]. With the

www.ulopenaccess.com

Page | 59

Data-Driven Machine Learning-Based Prediction and Performance Analysis of Software Defects

for Quality Assurance

assistance of ML algorithms, it is possible to use a historical
repository of defects and software metrics to identify
patterns and relationships that may not be evident to human
analysts automatically. The labels: Predictive models can be
employed to identify modules or components as non-defect-
prone or defect-prone at a very early stage of development,
thereby making it feasible to take proactive measures to
minimize the cost of debugging, the release cycle, and ensure
on-time product delivery [11]. Furthermore, in addition to
the improved accuracy of prediction, ML also enables the
detailed analysis of performance, allowing organizations
to evaluate the strengths and weaknesses of implemented
models and optimize their QA policies accordingly [12].

Code size, cyclomatic complexity, depth of inheritance,
and design features will give useful information about the
probability of defects [13][14]. These quantifiable properties
encapsulate the complexity and form of software systems and
can be useful in predicting regions with a high probability
of error. ML analysis of such features, when used properly,
guides organizations in enhancing their quality assurance
processes, thereby becoming more proactive, reliable, and
cost-efficient.

Motivation and Contribution of the Paper

The immediate need to improve software quality through
accurate defect forecasting prompted the performance of
this research. Software bugs can lead to failures, financial
loss, and damage to reputation, and it is essential to consider
early detection as a means of successful quality assurance.
Traditional approaches, such as manual inspection or rule-
based methods, are often time-consuming, subjective, and
inadequate for complex software systems. Data-driven
machine learning techniques provide a promising alternative
by automating defect prediction, identifying high-risk
modules early, and enabling proactive measures to enhance
software reliability and reduce development costs. This
study’s main contributions are outlined below:

e Utilized the NASA JM1 dataset, including 10,885 records
and 22 features, to ensure a comprehensive analysis of
software modules.

¢ Implemented stringent data pretreatment measures
to enhance model reliability, such as handling
missing values, detecting and removing outliers, and
standardising.

¢ The most informative qualities were retained for
defect prediction after implementing ASKB for feature
selection.

e To make sure that modules prone to defects are fairly
represented, we used MOSD to address class imbalance.

e Developed a Random Forest-based predictive framework
capable of accurately sorting software components
according to their vulnerability to bugs.

¢ Conducted thorough evaluations of models utilizing
F1-score, recall, accuracy, and precision to guarantee

practical application in software quality assurance and
robust assessment.

Justification and Novelty of the Paper

The justification for this work is rooted in the urgent
requirement to enhance software reliability by accurately
identifying defect-prone modules before deployment.
Traditional inspection and rule-based methods are often
inefficient and subjective, particularly in large-scale projects.
This research introduces novelty by integrating Adaptive
Sequential K-Best (ASKB) for dynamic feature selection
with MOSD for synthetic balancing, ensuring meaningful
attributes and fair class representation. The combined
framework, implemented using Random Forest, not only
demonstrates improved performance but also enhances
interpretability and efficiency. Unlike prior studies limited to
single techniques, this work presents a holistic, data-driven
approach tailored for robust software defect prediction
(SDP).

Structure of the Paper

The framework of the study is presented in this section,
which identifies research gaps and reviews related work. The
approach, including the steps for preprocessing and designing
the classifier, is detailed in Section I1I. Section IV describes the
outcomes of the experiments and the comparisons. Section V
is the final part of the work and provides directions to further
research and Section VI provides the list of sources.

LITERATURE REVIEW

ML, feature optimization and class imbalance management
are used in the literature on software defect prediction.
Accuracy is high and scalability, generalization, real-time
applicability and hybrid model integration are limited.

Manjula and Florence (2019) recommend hybrid approach
based on the idea of genetic algorithms (GAs) and deep
neural networks (DNNs) classification feature optimisation
to predict the early software defects. The technique uses a
refined version of GA able to construct chromosomes and
calculate fitness functions, and a DNN strategy that uses an
adaptive auto-encoder to more accurately represent software
functionality. Experiments and case studies demonstrate
the enhanced efficiency carried out on the PROMISE data
in MATLAB. By 97.96% accuracy in PC3 dataset, 98.00%
accuracy in PC4 dataset, 97.59% accuracy in CM1 dataset,
97.82% accuracy in the KC1 dataset, Compared to the existing
approaches, the proposed one is superior [15]

Lingden et al. (2019) present a solution to the unequal
representation of classes in datasets applied in software
defect prediction (SDP). The model is comprised of a
correlation feature selection (CFS) method and a modified
undersampling method. The proposed model raised the
precision of F1-score to 0.52-0.96 to achieve the optimal F1-
score percentage of 0.96% close to 100 percent using ten
open source project datasets. This strategy will address the
fault prediction and reduce the processing time by enhancing

Universal Library of Engineering Technology

Page | 60

Data-Driven Machine Learning-Based Prediction and Performance Analysis of Software Defects

for Quality Assurance

the overall outputs of the existing classification systems. It
is believed that SDP is more predictable, and processing time
efficient due to the emphasis that the model places on data
balance [16]

Nascimento et al. (2018) discuss software testing difficulties,
principles, and the lack of a comprehensive test. Using Kaizen
Programming (KP), which automatically identifies high-
quality nonlinear combinations of database characteristics,
a method is suggested to detect problematic modules. In
feature engineering, this takes the place of humans. Testers
were able to uncover 216% more faults using the new
features compared to random module selection, according to
the study, which used a NASA open dataset with more than
9500 modules. Here we see a 1% improvement over the first
features [17]

Kumar, Tirkey and Rath (2018) explored ways to identify
potentially problematic modules in software by including
fault prediction models into the design process of SDLC.
A model was created by combining an extreme ML with
different kernel approaches with twenty different kinds of
software measurements. Case studies from thirty object-
oriented software systems were utilised to assess the
model’s efficacy using a testing approach that prioritised
efficiency and cost. For projects with a low (47.28%), middle
(39.24%), or high (25.72%) percentage of faulty classes, the
results showed that the fault prediction model was effective.
They also used nine feature selection methods to weed out
superfluous metrics and zero in on the best collection of
source code metrics for error prediction [18]

Jacob and Raju’s (2017) studied the application of machine
learning and data mining methodologies for predicting
software failures in aerospace systems, aiming to mitigate

the consequences of software faults that can significantly
endanger human lives and financial assets. The main goal
of their work was to find the best feature selection and
classification procedure to use in prediction modelling. They
established a new hybrid feature selection methodology,
which yielded a higher fault predictability of approximately
98 percent, as opposed to 82 percent. Also, the mean Matthew
Coefficient (MCC) of 0.7-0.9 with an accuracy of between 86-
98% was achieved due to the random subsampling process.
This research notes that more research is possible on the
main characteristics contributing to fault prediction with
the aim of developing aerospace systems with less fault and
performance [19]

Gupta and Saxena’s (2017) research on software quality
emphasizes the importance of software quality for users,
researchers, and software developers. Using measurements,
they created a model for SBPS, a software bug prediction
system that can forecast class-wide issues during software
validation. The Promise Software Engineering Repository is
used to build the model, together with 14 relevant metrics
and open-source defect datasets. When compared to other
classifiers, the Logistic Regression Classifier produces the
most accurate results. Separate validations of the Combined
Dataset and all other validated datasets are used to train and
test the model. Overall averaged accuracy of the model is
76.27%, demonstrating its effectiveness in predicting bugs
in software. [20]

Table I summarizes methodologies, datasets, key findings,
limitations, and future work, highlighting gaps in dataset
imbalance handling, fault density sensitivity, model
generalization, hybrid integration, and real-time efficiency
for software defect prediction.

Table I. An overview of related research on machine learning-based software defect prediction

Correlation Feature

0.96); reduced processing

Author Methodology Dataset Key Findings Limitations Future Work
Manjula & Deep Neural PROMISE dataset |Hybrid approach achieved |Focused only Extend to other
Florence Network (DNN) high classification on feature datasets and explore
(2019) adaptive auto- accuracy (PC3:97.96%, |optimization; limited |real-time defect
encoder and Genetic PC4:98.00%, CM1: generalization beyond |prediction; optimize
Algorithm (GA) 97.59%, KC1: 97.82%,); |selected datasets; computational
for hybrid feature improved feature computational cost not |efficiency of GA-DNN
optimisation representation enhances |discussed approach
defect prediction
Lingdenetal. |Modified Ten open-source |Class imbalance handling |Limited to Explore hybrid
(2019) undersampling with |project datasets |improved F1-score (0.52- |undersampling; impact |imbalance handling

of other imbalance

techniques; test on

(KP) for automatic
feature engineering
and classification

modules by 216% over
random selection; 1%
improvement over
original features

Selection (CFS) time for defect prediction |handling methods not |larger industrial
explored datasets
Nascimento et |Kaizen NASA dataset New features improved Focused on feature Investigate integration
al. (2018) Programming (9500+ modules) |detection of defective engineering only; with deep learning

improvement marginal
in some cases; reliance

on historical data

models; real-time
adaptive testing based
on predictive features

Universal Library of Engineering Technology

Page | 61

Data-Driven Machine Learning-Based Prediction and Performance Analysis of Software Defects

for Quality Assurance

Nata D;

ing
Detect and

remove outliers
—> =

Feature Selection with ASKB 4—| Data Balance with MOSD

Handle missing
values

A

Training set

L]

¢—— | Data Splitting Testing set

Proposed Classifier Random Forest

v

Performance metrics
Accuracy, Precision, Recall and F1 score

] |

©]

Fig 1. Proposed Methodology for SDP
METHODOLOGY

The methodology is designed to build a robust framework for
predicting software defects and ensuring quality assurance,
as shown in Figure 1. It employs the JM1 dataset from
NASA, which consists of 10,885 records and 22 features.
The first step is data preprocessing, which involves dealing
with missing values, finding and removing outliers, and
normalising the data so that features scale consistently.
Adaptive Sequential K-Best (ASKB) is then applied for
feature selection to retain the most relevant attributes, while
MOSD addresses class imbalance for fair representation.
To facilitate effective learning and validation, the dataset is
pre-processed in an 80:20 ratio to produce a training set
and a testing set. Because of its resilience and capacity to
manage intricate, high-dimensional data, the Random Forest
classifier was selected. As a last step in enhancing software

Kumar, Tirkey |Elastic Learning 30 object-oriented | Fault prediction effective |Performance decreases |Develop adaptive

& Rath (2018) |Machine (ELM) software systems |for low to medium faulty |with high fault density; |models for varying fault
using feature classes; efficiency: Low: |threshold-based distributions; optimize
selection and 47.28%, Medium: 39.24%, | limitation; scalability |feature selection for
different kernel High: 25.72%; 9 feature |to large datasets not large-scale projects
approaches selection techniques addressed

evaluated

Jacob & Raju Hybrid feature NASA Lunar space |Hybrid method improved |No single predictive Identify domain-

(2017) selection and system software |fault prediction accuracy |model suitable forall |agnostic predictive
classification; (~82%-98%); MCC datasets; aerospace features; explore
random improved (~0.7-0.9) focus may limit ensemble learning for
subsampling generalizability consistent performance

across datasets

Gupta & Saxena | Logistic Regression- |PROMISE datasets |Model predicted class- Limited accuracy Explore advanced ML

(2017) based Software Bug level bugs with overall compared to advanced |and hybrid techniques;
Prediction System average accuracy of ML models; only extend model for cross-
(SBPS) with metric 76.27%; validated 14 best |logistic regression project prediction and
validation metrics used; fewer datasets real-time QA

quality, the trained model is evaluated using F1-score, recall,
accuracy, and precision. It then labels modules as either non-
defect or defect-prone.

Data Collection

Popular SDP datasets for real-time predictive ground code in
C include the NASA-created JM1 dataset. It has 22, features,
10,885 records, and is based on McCabe and Halstead
metrics including design complexity, volume, difficulty,
and cyclomatic code lines, as well as Halstead metrics like
essential lines of code, design complexity, and cruciality. The
binary target variable signifies whether it has defects (True)
or not (False). Itis highly imbalanced (80.65% defective), and
has been utilized to test predictive software quality models.

400 A

100 4

= —

Fig 2. Class Distribution of the Dataset

The bar chart in Figure 2 is distribution of the JM1 dataset, a
well-known software defect dataset, illustrates a pronounced
class imbalance. The two classes, labelled ‘0’ and ‘1’, likely
represent non-defective and defective modules, respectively.
The visualization shows that class ‘0’ dominates with over
400 instances, while class ‘1’ has fewer than 50 instances.
This corresponds to a highly imbalanced distribution, with
approximately 80.65% of the modules being non-defective
and only 19.35% being defect-prone. Machine learning

Universal Library of Engineering Technology

Page | 62

Data-Driven Machine Learning-Based Prediction and Performance Analysis of Software Defects

for Quality Assurance

models may be biased towards the majority class as a result
of this imbalance, missing cases from the minority class that
are more likely to have flaws.

Fig 3. Correlation Heatmap of the Dataset

Figure 3 displays a heatmap displaying correlations within
the JM1 dataset, illustrating the pairwise Pearson correlation
coefficients among various software metrics. The value of
the correlation between two attributes is represented by
each cell, with a color gradient from dark blue (negative
correlation) to bright yellow (positive correlation). Strong
positive correlations are observed among metrics like loc,
v(g), ev(g), and n. Certain metrics, such as defects and locCode,
also exhibit moderate correlations with complexity-related
attributes. Conversely, weak correlations are seen between
some control flow metrics and defects. This visualization
highlights interdependencies, aiding in feature selection
and identifying potential multicollinearity in predictive
modelling tasks for software defect prediction.

Data Preprocessing

An important step in data preparation for predictive
modelling is cleaning and normalising raw data on software
defects. Since datasets often contain inconsistencies, noise,
and imbalanced distributions, pre-processing ensures
improved quality, reliability, and consistency of the data.
To improve dataset integrity, the following measures were
applied:

¢ Missing Values Handling: Incomplete records were
addressed using mean/mode imputation or KNN-based
imputation, ensuring no gaps in the dataset.

¢ Outlier Detection and Removal: The Z-score method
was employed to detect and eliminate abnormal values
that could distort learning outcomes.

Normalization

Data normalisation is essential to prevent features with
varying scales from unduly impacting the model [21]. For
example, a feature like “number of commits” could have a
much larger range compared to “developer activity,” leading
to biased learning. To make the features comparable, they
are usually transformed into the range of 0 to 1 with the
help of min-max normalization. In order to make sure that
every feature helps the model learn the same way, this
normalisation strategy adjusts the magnitude of each feature.
One is the value of the min-max normalisation Equation.(1)

x:nvx;n;::in W
This is where the original feature, denoted as x, and its

minimum and maximum values, xmin and xmax, are
defined.

Xnormalised —

Data Balancing using MOSD

Overcoming the issue of unequal class distribution in
datasets of software defects Minority Oversampling by
Synthetic Data (MOSD) method is used, with defect prone
modules significantly underrepresented by non-defect
modules. This imbalance usually makes the models used
in prediction favour the majority category of predictions,
thereby lowering the accuracy of determining real defects
[22]. MOSD creates synthetic samples of the minority group,
by nearest-neighbour-interpolation, with realistic and varied
defects. With this, the distribution of the datasets is balanced
and thus the classifier learns the patterns of both classes in
an effective manner. The result of MOSD application, which
demonstrates the transition to the balanced dataset instead
of the imbalanced dataset is presented in Figure 4.

400 1

100 1

Non Defects (0)

Defects (1)

Fig 4. Dataset After Data Balancing
Feature Selection with ASKB

ASKB feature selection technique is a developed technique
of choosing the most useful features in predicting software
bugs. It works in an iterative manner, evaluating the
contribution of every feature with statistical quantities like
mutual information or chi-square and then dynamic refines

Universal Library of Engineering Technology

Page | 63

Data-Driven Machine Learning-Based Prediction and Performance Analysis of Software Defects

for Quality Assurance

the subset [23]. ASKB lands on key features and discards
redundant or noisy features by only retention; this minimizes
the dimensionality and retains the crucial information. This
increases training efficiency, eliminates overfitting and
improves classification. In addition, ASKB makes sure that
the predictive model concentrates on meaningful software
metrics thus enhancing accuracy and interpretation.

Data Division

There were two sets of data utilised: A training one and a
testing one. The ratio of the two sets was 80:20. This approach
increases the model’s generalizability, dependability, and
fairness by ensuring that it is trained with sufficient data and
then tested on unknown cases.

Proposed Random Forest Model

To enhance the accuracy of predictions, Bierman developed
the random forest, an ensemble approach to ML which
combines the result of several decision trees [24]. As shown
in Figure 5, the final classification is produced by a majority
voting system across all decision trees, which are each
handled as a separate classifier.

1 Boatsmpping 1=~ Featuresltion Tree |

Wi

Duostpping =¥ Frostheion = Tre?

W

Classfication

Feaures ,\\'v) Vating ¥ il

s

Boottrpping =¥ Fesosclocion =¥ Tree

Boostepping ¥ Feawmschelon 0 TreT

Fig 5. Structure of the Random Forest

Here, x_iER™M is the feature vector of size M and y_i is the
associated class label, and the training dataset is comprised
of N samples. Each of the T trees in a RF is trained using a
bootstrap sample D_t, which is created by randomly picking
N samples from the original dataset with replacement [25].
Consequently, some training samples may appear multiple
times in D, while others may not be used at all. Instead of
taking into account all M features at each divided in a tree,
a randomly selected subset of m features (m<M) is used to
identify the best split using an impurity measure, like the
Gini index, as defined in Equation (2):

G(t) =1- X5 p? 2

Where 17;, denotes the proportion of class k samples at node
t, and K is the total classes. Each decision tree is permitted
to grow to its max depth without pruning, ensuring that the

data is fully partitioned. The last step is for all of the T trees
to vote on the random forest classifier’s final prediction,
which can be mathematically expressed in Equation (3)

y=mode{h, (|t =12,...,T} ®

Where f1,(x) is what the t-th decision tree’s output for
input x looks like.

Performance Metrics

Error matrices, another name for confusion matrices,
summarise prediction results on a classification problem
and are utilised to assess the efficacy of various model
approaches [26]. When dealing with a classification problem,
where the output could fall into more than one category,
model evaluation takes centre stage. The confusion matrix
is a popular and straightforward statistic for this purpose.
It measures the likelihood of four possible outcomes true
negative (TN), false negative (FN), true positive (TP), and
false positive (FP).

e A TP occurs when both the model’s estimates and the
test data are accurate.

e FN The model has obtained incorrect estimates while
the test data is accurate.

e The model’s estimates and test data are both incorrect;
this is known as a true negative (TN).

e False positives (FPs) occur when the model’s estimated
true values are at odds with the test data.

Accuracy: Equation (4) expresses accuracy, often known as
the categorization rate.
TP+TN

TP+TN+FP+FN ()
Precision: “Precision” is defined as the ratio of the number of
accurately detected positive cases to the number of positive
examples that were anticipated [27]. As shown in Equation
(5), As decreases the value of FP, precision increases and it
indicates an example labeled as positive is indeed positive.

TP
TP+FP (5)

Recall: Divide the sum of all actual class observations by the
number of positively predicted observations to get the recall
value. You can find this formula in Equation (6):

Accuracy =

Precision =

TP
Recall = ——— (6)
TP+FN
F1-Score: When calculating accuracy, this measure

considers not just recall and precision, but also FP and FN.
The F-measure is determined by averaging the test’s recall
and precision using a weighted harmonic mean. As stated in
Equation (7), this metric has an equation:

2.(Precision-Recall)

F1 score = — (7)
Precision+Recall

The evaluation metrics ensure that the model is performing
well by providing a thorough assessment of its accuracy,
reliability, and robustness in making predictions.

Universal Library of Engineering Technology

Page | 64

Data-Driven Machine Learning-Based Prediction and Performance Analysis of Software Defects

for Quality Assurance

RESULT ANALYSIS AND DISCUSSION

The effective detection of software defects is critical for
ensuring high-quality software development, reducing
maintenance costs, and improving overall system reliability.
The proposed model was implemented using Python with
the scikit-learn library for machine learning. This system,
which runs Windows 11, has an CPU of Intel Core i7, RAM of
16 GB, and was used for the testing, which offered adequate
computational power necessary to train and test it. To
measure the model’s efficacy, we employed Accuracy, Recall
Precision, and F1-score. There is a high level of reliability
in the Random Forest’s defect detection performance, as
shown in Table II by its 98.1% accuracy, 98.7% precision,
97.8% recall, and 98.2% F1-score. The results demonstrate
that the ML algorithms like the RF may be significant in
ensuring software quality by identifying faulty codes at the
earliest stage and minimizing the exposure that may arise
throughout the software program development process.

Table II. Performance Metrics of Random Forest Model for
Software Defect Prediction

Metrics Random Forest
Accuracy 98.1
Precision 98.7
Recall 97.8
F1-score 98.2

True Label

o 1
Predicted Label

Fig 6. Confusion Matrix for the Random Forest Model

A confusion matrix, a typical visual for testing a classification
model, is shown in Figure 6. There are two axes in the matrix;
one axis represents the True Label (with values of 0 and 1)
and the other represents the Predicted Label (with values of
0 and 1). You can see how often the model’s predictions were
correct in comparison to the actual results in the matrix.
Class ‘0’ (True Negatives) is shown in the top-left cell with
494 instances that were correctly identified. There are 489
examples of class ‘1’ (True Positives) that were accurately
classified in the cell located at the bottom-right. In the top-
right corner, you can see six cases of class ‘0’ being wrongly
forecasted as ‘1’ (False Positives), while in the bottom-left
corner, you can see eleven cases of class ‘1’ being wrongly

predicted as ‘0’ (False Negatives). These off-diagonal cells
stand for errors. This indicates the model correctly predicted
983 out of 1000 total cases, demonstrating high accuracy.

ROC Curve - Random Forest
1.0 - —
”
-
”
.
”
-
0.8 o
-
e
-

;-] >
n -
o
o 0.6 4 Fg
> -
2 P
= ”
8 7
5 -~

0.4 ”
g 7

-~
-
”
-
-~
0.2 A 4
rd
”
”
-
rd
-~
0.0
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Fig 7. ROC Curve for the RF Model

The machine learning model known as the “Random Forest”
classifier’s Receiver Operating Characteristic (ROC) curve
is displayed in Figure 7. The FP Rate (x-axis) and the TP
Rate (y-axis) are plotted on the graph for various threshold
settings. A solid blue line depicting the Random Forest
model’s performance. A dashed red line extending from
(0,0) to (1,1) serves as a baseline, representing a random
classifier. The blue curve hugs the top-left corner of the plot,
staying well above the red dashed line. All criteria show that
the model performs exceptionally well and can differentiate
between positive and negative classes, as seen by its low
False Positive Rate and high True Positive Rate.

Comparative Analysis

The comparison of different ML models is vital to identify
the most effective approach for software defect prediction. In
this work, Random Forest was evaluated against Naive Bayes,
Neural Network, and SVM. As shown in Table III, Naive Bayes
achieved good recall (94%) but low accuracy (80.39%).
Neural Networks achieved greater accuracy (93.64) and poor
recall (64.61), hence, missed defects. SVM was more precise
(95.7% and recall (88.7%). Nonetheless, the most accurate
and the best F1-score were the models based on the Random
Forest, with 98.1% and 98.2, respectively, making it the most
trusted tool to predict the software defects.

Table 3. Comparative Performance of Machine Learning
Models for Software Defect Prediction

Models Accuracy | Precision | Recall | F1-score
NB[28] 80.39 89 94 83
Neural network[29] | 93.64 81.56 64.61 |72.10
SVM[30] 86 95.7 88.7 91.8
Random Forest 98.1 98.7 97.8 98.2

The framework suggested also outlines the importance of
the combination of pre-processing, feature selection, and

Universal Library of Engineering Technology

Page | 65

Data-Driven Machine Learning-Based Prediction and Performance Analysis of Software Defects

for Quality Assurance

class balancing with a RF classifier in improving software
defect prediction. The approach mitigates data imbalance,
redundant attributes and noise, and therefore, the model is
trained on more meaningful and representative data. Relative
analysis reveals that the framework is more effective than the
conventional ones, and it is effective in processing complex
and high-dimensional data. In sum, the research supports
the hypothesis that ML based prediction can be utilised to
forecast proactive quality control, minimizing maintenance
work, and permitting scalable solutions to the problem of
software reliability management.

CONCLUSION & FUTURE WORK

The ensemble of a carefully designed machine learning
system that includes preprocessing, feature selection, and
the class balancing resulted in a great predictive accuracy on
software defects. To make sure that only the mostinformative
features were retained, ASKB was utilized, and MOSD was
utilized to successfully address class imbalance. Random
Forest, chosen due to its strength and scalability, gave good
results with the Accuracy, Recall, Precision, and F1-score
of 98.1, 98.7 and 97.8 correspondingly. It was shown that
it was a superior system in relation to Naive Bayes, Neural
Networks and SVM, and that LiB hypothesis can handle
high dimensional and complex data, and reliably identify
defect-prone modules. These results attest to the possibility
of machine learning in terms of reducing the costs of tests,
raising the degree of reliability, and, overall, making software
quality assurance a more effective process. In the future, the
work will aim at expanding the framework to include hybrid
and DL models that will have the capability of capturing more
intricate defect patterns. The presence of explainable Al will
allow transparency, as the decision-making process will be
transparent and more explainable; therefore, the approach
will be more viable to software engineers. In addition, the
reinforcement of the generalizability will be provided
through the expansion of the evaluation to cross-project
and industrial datasets. Finally, it can be incorporated into
continuous integration and deployment pipelines to carry
out real time monitoring which would enhance further the
automation of software quality management and make
predictive defect detection a continuous process of the
development life cycle.

REFERENCES

1. D. D. Rao, “Multimedia Based Intelligent Content
Networking for Future Internet,” in 2009 Third
UKSim European Symposium on Computer Modeling
and Simulation, 2009, pp. 55-59. doi: 10.1109/
EMS.2009.108.

2. G. Fan, X. Diao, H. Yu, K. Yang, and L. Chen, “Software
Defect Prediction via Attention-Based Recurrent Neural
Network,” Sci. Program., vol. 2019, no. 1, pp. 1-14, Apr.
2019, doi: 10.1155/2019/6230953.

3. X. Zhang, K. Ben, and]. Zeng, “Cross-Entropy: A New
Metric for Software Defect Prediction,” in 2018 IEEE

10.

11.

12.

13.

14.

International Conference on Software Quality, Reliability
and Security (QRS), IEEE, Jul. 2018, pp. 111-122. doi:
10.1109/QRS.2018.00025.

V. Rajavel, B. Goverdhenan, and A. V. Gomathinayagam,
“Eye Gaze Pecularities Detection in Children with Autism
using a Head-free cam,” Int.]. Eng. Sci. Res. Technol., vol.
5, no. 6, pp. 868-876, 2016.

M. Shepperd, D. Bowes, and T. Hall, “Researcher Bias: The
Use of Machine Learning in Software Defect Prediction,”
IEEE Trans. Softw. Eng., vol. 40, no. 6, pp. 603-616, Jun.
2014, doi: 10.1109/TSE.2014.2322358.

S. Dhall and A. Chug, “Software Defect Prediction Using
Supervised Learning Algorithm and Unsupervised
Learning Algorithm,” in Confluence 2013: The Next
Generation Information Technology Summit (4th
International Conference), Institution of Engineering
and Technology, 2013, pp. 5.01-5.01. doi: 10.1049/
cp.2013.2313.

A. Thapliyal, P. S. Bhagavathi, T. Arunan, and D. D. Rao,
“Realizing Zones Using UPnP,”in 2009 6th IEEE Consumer
Communications and Networking Conference, 2009, pp.
1-5.doi: 10.1109/CCNC.2009.4784867.

S. Aleem, L. FE. Capretz, and F. Ahmed, “Benchmarking
machine learning technologies for software defect
detection,” arXiv Prepr. arXiv1506.07563, 2015.

S. Wang and X. Yao, “Using Class Imbalance Learning
for Software Defect Prediction,” IEEE Trans. Reliab.,
vol. 62, no. 2, pp. 434-443, Jun. 2013, doi: 10.1109/
TR.2013.2259203.

R. Malhotra and A. Jain, “Fault Prediction Using Statistical
and Machine Learning Methods for Improving Software
Quality,”]. Inf. Process. Syst., vol. 8, no. 2, pp. 241-262,
Jun. 2012, doi: 10.3745/]J1PS.2012.8.2.241.

H. Foidl and M. Felderer, “Risk-based data validation
in machine learning-based software systems,” in
Proceedings of the 3rd ACM SIGSOFT International
Workshop on Machine Learning Techniques for Software
Quality Evaluation, New York, NY, USA: ACM, Aug. 2019,
pp. 13-18. doi: 10.1145/3340482.3342743.

A. Balasubramanian, “Ai-Enabled Demand Response:
A Framework For Smarter Energy Management,” Int. J.
Core Eng. Manag,, vol. 5, no. 6, pp. 96-110, 2018.

0. Nalbach, C. Linn, M. Derouet, and D. Werth, “Predictive
quality: Towards a new understanding of quality
assurance using machine learning tools,” in International
conference on business information systems, 2018, pp.
30-42.

A.Igbal et al., “Performance analysis of machine learning
techniques on software defect prediction using NASA
datasets,” Int. J. Adv. Comput. Sci. Appl, 2019, doi:
10.14569/ijacsa.2019.0100538.

Universal Library of Engineering Technology

Page | 66

Data-Driven Machine Learning-Based Prediction and Performance Analysis of Software Defects

for Quality Assurance

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

C. Manjula and L. Florence, “Deep neural network based
hybrid approach for software defect prediction using
software metrics,” Cluster Comput., vol. 22, pp. 9847-
9863, 2019.

P.Lingden, A. Alsadoon, P.W.C. Prasad, O. H. Alsadoon, R.S.
Alj, and V. T. Q. Nguyen, “A novel modified undersampling
(MUS) technique for software defect prediction,” Comput.
Intell., vol. 35, no. 4, pp. 1003-1020, 2019.

A. M. Nascimento, V. V. de Melo, L. A. V. Dias, and A. M.
da Cunha, “Increasing the prediction quality of software
defective modules with automatic feature engineering,’
in Information Technology-New Generations: 15th
International Conference on Information Technology,
2018, pp. 527-535.

L. Kumar, A. Tirkey, and S.-K. Rath, “An effective fault
prediction model developed using an extreme learning
machine with various kernel methods,” Front. Inf.
Technol. \& Electron. Eng., vol. 19, no. 7, pp. 864-888,
2018.

S.Jacob and G. Raju, “Software defect prediction in large
space systems through hybrid feature selection and
classification.,” Int. Arab]. Inf. Technol,, vol. 14, no. 2, pp.
208-214, 2017.

D. L. Gupta and K. Saxena, “Software bug prediction
using object-oriented metrics,” vol. 42, no. 5, pp. 655-
669, 2017.

A. Quality, “Al-Driven Frameworks for Efficient Software
Bug Prediction and Automated Quality Assurance,” vol.
7, pp- 57-66, 2019.

H. Alsawalqah, H. Faris, 1. Aljarah, L. Alnemer, and N.
Alhindawi, “Hybrid SMOTE-ensemble approach for
software defect prediction,” in Computer science on-line
conference, 2017, pp. 355-366.

M. Kakkar and S. Jain, “Feature selection in software
defect prediction: A comparative study,” in 2016 6th
International Conference - Cloud System and Big Data
Engineering (Confluence), IEEE, Jan. 2016, pp. 658-663.
doi: 10.1109/CONFLUENCE.2016.7508200.

Y. N. Soe, P. I. Santosa, and R. Hartanto, “Software Defect
Prediction Using Random Forest Algorithm,” in 2018
12th South East Asian Technical University Consortium
(SEATUC), IEEE, Mar. 2018, pp. 1-5. doi: 10.1109/
SEATUC.2018.8788881.

R. Li, L. Zhou, S. Zhang, H. Liu, X. Huang, and Z. Sun,
“Software Defect Prediction Based on Ensemble
Learning,” in Proceedings of the 2019 2nd International
Conference on Data Science and Information Technology,
New York, NY, USA: ACM, Jul. 2019, pp. 1-6. doi:
10.1145/3352411.3352412.

H. Lu, B. Cukic, and M. Culp,
prediction using semi-supervised

“Software defect
learning with

27.

28.

29.

30.

3L

32.

33.

34.

35.

dimension reduction,” in Proceedings of the 27th
IEEE/ACM International Conference on Automated
Software Engineering, Sep. 2012, pp. 314-317. doi:
10.1145/2351676.2351734.

B. Yalciner and M. Ozdes, “Software Defect Estimation
Using Machine Learning Algorithms,” UBMK 2019 -
Proceedings, 4th Int. Conf. Comput. Sci. Eng., no. August,
pp.- 487-491, 2019, doi: 10.1109/UBMK.2019.8907149.

G. P. Bhandari and R. Gupta, “Machine learning based
software fault prediction utilizing source code metrics,’
in20181EEE 3rd International Conference on Computing,
Communication and Security (ICCCS), IEEE, Oct. 2018,
pp- 40-45. doi: 10.1109/CCCS.2018.8586805.

R. Jayanthi and L. Florence, “Software defect prediction
techniques using metrics based on neural network
classifier;” Cluster Comput., vol. 22, no. Suppl 1, pp. 77-
88, 2019.

P. S. Sandhu, R. Goel, A. S. Brar, J. Kaur, and S. Anand, “A
model for early prediction of faults in software systems,”
in 2010 The 2nd International Conference on Computer
and Automation Engineering (ICCAE), 2010, pp. 281-
285.doi: 10.1109/ICCAE.2010.5451695.

Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S.
K. K, Chundry, S. K., & Vangala, S. R. (2021). Big Text Data
Analysis for Sentiment Classification in Product Reviews
Using Advanced Large Language Models. International
Journal of Al, BigData, Computational and Management
Studies, 2(2), 55-65.

Gangineni, V. N.,, Tyagadurgam, M. S. V,, Chalasani, R,
Bhumireddy, J. R., & Penmetsa, M. (2021). Strengthening
Cybersecurity Governance: The Impact of Firewalls on
Risk Management. International Journal of Al, BigData,
Computational and Management Studies, 2, 10-63282.

Pabbineedj, S., Penmetsa, M., Bhumireddy, J. R., Chalasani,
R, Tyagadurgam, M. S. V,, & Gangineni, V. N. (2021). An
Advanced Machine Learning Models Design for Fraud
Identification in Healthcare Insurance. International
Journal of Artificial Intelligence, Data Science, and
Machine Learning, 2(1), 26-34.

Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., Chundru,
S. K, Vangala, S. R, & Polam, R. M. (2021). Advanced
Machine Learning Models for Detecting and Classifying
Financial Fraud in Big Data-Driven. International Journal
of Artificial Intelligence, Data Science, and Machine
Learning, 2(3), 39-46.

Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineed,i,
S., Penmetsa, M., Bhumireddy, J. R, & Chalasani, R.
(2021). Enhancing [oT (Internet of Things) Security
Through Intelligent Intrusion Detection Using ML
Models. International Journal of Emerging Research in
Engineering and Technology, 2(1), 27-36.

Universal Library of Engineering Technology

Page | 67

Data-Driven Machine Learning-Based Prediction and Performance Analysis of Software Defects

for Quality Assurance

36.

37.

38.

39.

Vangala, S. R,, Polam, R. M., Kamarthapu, B., Kakani, A.
B., Nandiraju, S. K. K,, & Chundru, S. K. (2021). Smart
Healthcare: Machine Learning-Based Classification of
Epileptic Seizure Disease Using EEG Signal Analysis.
International Journal of Emerging Research in
Engineering and Technology, 2(3), 61-70.

Kakani, A. B, Nandiraju, S. K. K., Chundruy, S. K., Vangala,
S. R, Polam, R. M., & Kamarthapu, B. (2021). Big Data
and Predictive Analytics for Customer Retention:
Exploring the Role of Machine Learning in E-Commerce.
International Journal of Emerging Trends in Computer
Science and Information Technology, 2(2), 26-34.

Penmetsa, M., Bhumireddy,]. R, Chalasani, R,
Tyagadurgam, M. S. V,, Gangineni, V. N., & Pabbineedi,
S. (2021). Next-Generation Cybersecurity: The Role
of Al and Quantum Computing in Threat Detection.
International Journal of Emerging Trends in Computer
Science and Information Technology, 2(4), 54-61.

Polu, A. R, Vattikonda, N., Gupta, A., Patchipulusu, H.,
Buddula, D. V. K. R, & Narra, B. (2021). Enhancing
Marketing Analytics in Online Retailing through Machine
Learning Classification Techniques. Available at SSRN
5297803.

40. Polu, A. R, Buddula, D. V. K. R, Narra, B, Gupta, A,

41.

42.

43.

Vattikonda, N., & Patchipulusu, H. (2021). Evolution of
Alin Software Development and Cybersecurity: Unifying
Automation, Innovation, and Protection in the Digital
Age. Available at SSRN 5266517.

Polu, A. R, Vattikonda, N., Buddula, D. V. K. R,, Narra,
B., Patchipulusu, H., & Gupta, A. (2021). Integrating
Al-Based Sentiment Analysis With Social Media Data
For Enhanced Marketing Insights. Available at SSRN
5266555.

Buddula, D. V. K. R., Patchipulusu, H. H. S,, Poluy, A. R,
Vattikonda, N., & Gupta, A. K. (2021). INTEGRATING Al-
BASED SENTIMENT ANALYSIS WITH SOCIAL MEDIA
DATA FOR ENHANCED MARKETING INSIGHTS. Journal
Homepage: http://www. ijesm. co. in, 10(2).

Gupta, A. K, Buddula, D. V. K. R,, Patchipulusu, H. H. S,,
Poly, A. R, Narra, B., & Vattikonda, N. (2021). An Analysis
of Crime Prediction and Classification Using Data Mining
Techniques.

Citation: Dinesh Rajendran, Aniruddha Arjun Singh Singh, et al., “Data-Driven Machine Learning-Based Prediction and
Performance Analysis of Software Defects for Quality Assurance”, Universal Library of Engineering Technology, 2022;
59-68. DOI: https://doi.org/10.70315 /uloap.ulete.2022.008.

Copyright: © 2022 The Author(s). This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Universal Library of Engineering Technology

Page | 68

