
Page | 42www.ulopenaccess.com

ISSN: 3064-996X | Volume 1, Issue 2

Open Access | PP: 42-46

DOI: https://doi.org/10.70315/uloap.ulete.2024.0102007

Universal Library of Engineering Technology Research Article

Methodology for Building Scalable Microservice Architectures on Go for
High‑Load E-Commerce Platforms
Ruslan Tsyganok
Head of Development Team, ecom.tech.

The article describes a methodology for building scalable microservice architectures in the Go language for high-load
e-commerce platforms. The basic principles of decomposition by “bounded contexts,” the choice of communication protocols
(REST vs. gRPC), as well as the use of stability patterns (Circuit Breaker, Bulkhead, Retry) and built-in Go capabilities (context.
Context, error wrapping). The infrastructure of containerization (Docker), orchestration (Kubernetes), CI/CD pipelines,
and Blue/Green & Canary deployment processes is described. The following scaling strategies have been investigated:
horizontal/vertical, automatic (HPA, Cluster Autoscaler), load balancing, asynchronous processing via Kafka/RabbitMQ,
caching (Redis) and profiling (pprof). Prototypes and load testing (k6, JMeter) confirmed a close to linear dependence of
throughput on the number of replicas. The proposed methodology ensures reliability, fault tolerance, and an economical
auto-scaling model with increasing user and transactional loads. The information described in this article will be in demand
by leading researchers and architectural engineers of distributed systems engaged in the methodological justification and
practical verification of scalable microservice solutions in the Go language for highly loaded e‑commerce environments.

Keywords: Microservices, Go, E-Commerce, Scalability, Devops, Kubernetes, Performance.

Abstract

Introduction

With the rapid expansion of e-commerce, the volume of user
requests and transactions continues to grow exponentially,
placing increased demands on system reliability, performance,
and scalability. Traditional monolithic architectures no
longer meet the requirements for peak-load handling and
fast iterations, leading to substantial financial losses and a
degraded user experience.

The objective of this article is to examine the methodology
for designing scalable microservice architectures using
the Go programming language, ensuring system reliability,
performance, and flexibility under peak e-commerce
workloads.

The scientific novelty of this work lies, first, in the
introduction of a unified integration framework combining
Go’s concurrency model, service mesh (e.g., Istio), event bus
(Kafka/NATS), and CI/CD automation to achieve near-linear
scalability of microservices. Second, it formalizes the criteria
for choosing communication protocols (gRPC vs. REST)
and caching strategies (Redis, Memcached) based on cloud
infrastructure cost-efficiency.

The author’s hypothesis is that the use of the CSP
paradigm in Go, combined with containerization (Docker),
orchestration (Kubernetes), and an event bus, can ensure
near-linear scalability and reduced response time under
increasing load.

Materials and Methods
In the scientific literature on distributed systems,
microservices have firmly established themselves as a key
pattern for building flexible and scalable applications. In
the first group of works, J. Lewis and M. Fowler [4] provide
a classical definition of a microservice as an autonomously
deployable component that manages its own state and
interacts with the rest of the system through lightweight
inter-process interfaces. H. Peter [3] compares the monolithic
and microservice models in the context of AI-integrated
applications. The author emphasizes that microservices
allow for better scaling of computational resources to meet
machine learning demands, while also introducing additional
complexity in managing interservice communication and
data consistency.

The second group of studies focuses on ensuring the
reliability and scalability of large-scale systems. C. Lattner et
al. [1] emphasize that high availability in distributed systems
requires both load balancing and service mesh integration.
G. Nookala [2] analyzes architectural patterns for managing
microservice environments. I.C. Donca, O.P. Stan, L. Miclea
[10] propose a clustering model for microservices based on
dynamic resource allocation and metric-driven autoscaling.

A key role in ensuring rapid delivery and release stabilization is
played by CI/CD practices and orchestration tools, as reflected
in the third group of studies. M. Di Carlo et al. [5] describe
the experience of implementing CI/CD in the SKA astronomy

Page | 43Universal Library of Engineering Technology

Methodology for Building Scalable Microservice Architectures on Go for High‑Load E-Commerce
Platforms

project. The present work emphasizes containerization,
automated testing, and canary deployment. R. Wang et al. [6]
propose a deployment approach for an archiving service on
Kubernetes for the CAFe scientific equipment project using
operators and Helm charts, which helps minimize manual
intervention. In turn, S. K. Mondal et al. [8] explore the use of
Kubernetes and serverless computing in IT administration,
highlighting the issues of “cold start” latency and challenges
related to stateful services.

Migration strategies are addressed by Y. Lee and Y. Liu [7],
who describe a step-by-step transition from REST applictions
to gRPC services. An automated step-by-step process for
transforming contracts is described, along with a comparison
of performance and overhead between the binary protocol
and JSON-over-HTTP.

Special attention should be given to research in the area of
security, particularly the study by S. Park et al. [9], which
proposes a mashine learning - based DDoS detection system
for 5G core networks. Despite the specialized context, the
methodology for building distributed detection modules is
applicable to microservice ecosystems in e-commerce, where
request volumes and the threat landscape are similar.

Thus, the analysis of related studies reveals a wide range of
approaches—from foundational definitions and architectural
comparisons to specific CI/CD practices and clustering.

Moving to the theoretical discussion of the topic, it should
be noted that, in accordance with the concept of Domain-
Driven Design (DDD), each microservice must correspond
to a clearly defined “bounded context”—for instance, order
management, product catalog, payment, or user management.
This kind of separation allows one to:

Simplify the development process, as teams work on •	
autonomous services without touching shared code;

Improve fault tolerance, since a failure in one service •	
does not lead to the failure of the entire system [3].

Microservice decomposition is based on the concept
of bounded contexts. According to DDD, each service is
responsible for its own business domain—order management,
catalog, payments, users, etc. This simplifies team workflows
(each team is responsible for its own service) and increases
the fault tolerance of the system [1,3]. A comparison of two
main approaches to interservice communication in Go is
presented in Table 1.

Table 1. Comparison of HTTP/REST and rpc for Go microservices [3, 5, 6].

Indicator HTTP/REST gRPC
Protocol HTTP/1.1 HTTP/2
Data format JSON (text-based, human-readable) Protocol Buffers (binary, compact)
Performance Medium High (low latency)
Typing Absent Strong (defined via .proto schemas)
Streaming Not supported Supported (bidirectional streaming)
Tooling Any HTTP client protoc-gen-go and Go standard libraries

To protect against partial failures and “dirty” peak loads, classical design patterns are applied:

Circuit Breaker (Tink for Go)o	

Bulkhead (resource isolation)o	

Retry with exponential backoffo	

The following is an example of implementing retries with exponential delay [4].

func Retry(ctx context.Context, operation func() error) error {
 var err error
 for i := 0; i < 5; i++ {
 if err = operation(); err == nil {
 return nil
 }
 select {
 case <-time.After(time.Duration(math.Pow(2, float64(i))) * time.Second):
 case <-ctx.Done():
 return ctx.Err()
 }
 }
 return err
}

Page | 44Universal Library of Engineering Technology

Methodology for Building Scalable Microservice Architectures on Go for High‑Load E-Commerce
Platforms

Following the described principles of responsibility separation, use of high-performance protocols, and built-in Go resilience
mechanisms, it is possible to build a microservice architecture capable of scaling reliably and nearly linearly under increasing
e-commerce platform load.

Go applications are compiled into statically linked binaries, which enables the creation of minimal Docker images [3]. Below
is an example of a multi-stage Dockerfile for a Go service:

Build stage
FROM golang:1.19-alpine AS builder
WORKDIR /app
COPY go.mod ./
COPY go.sum ./
RUN go mod download
COPY *.go ./
RUN CGO_ENABLED=0 GOOS=linux go build -o service .

Execution stage
FROM scratch
COPY --from=builder /app/service /service
EXPOSE 8080
ENTRYPOINT [“/service”]

CI/CD pipelines based on GitLab CI/CD or GitHub Actions
include build, testing, code quality analysis, image creation
and publishing, as well as deployment via kubectl or Helm.
To mitigate risks when releasing new versions, Blue/Green
and Canary deployment strategies are used.

To ensure modularity and clear separation of concerns, the
domain is decomposed into bounded contexts. Based on the
analysis of business rules and data flows, bounded contexts
are identified, each containing an independent data model
and API. This approach minimizes external dependencies
and facilitates parallel development of services.

When designing inter-service communication within the
cluster, preference is given to the gRPC protocol due to its low
latency, strong typing, and built-in streaming mechanism.
At the same time, HTTP/REST continues to be used for
external public APIs, as it simplifies integration with client
applications and third-party systems [7].

To improve service fault tolerance, Circuit Breaker and
Bulkhead patterns are implemented using ready-made
libraries (e.g., Tink). Retry and timeout policies are
standardized via the context package. A unified strategy for
error wrapping and tracing is based on the use of the fmt.
Errorf(“…: %w”, err) construct, which ensures logging and
simplifies diagnostics.

Containerization is performed using multi-stage builds
to minimize image size, and orchestration is handled
through Kubernetes (Deployment, StatefulSet, HPA, Cluster
Autoscaler). All configurations are tailored to meet the
requirements for fault-tolerant deployment and horizontal
scaling [8].

CI/CD processes are fully automated from commit to
production, including build, test, and deployment stages. To

reduce the risk of failures when releasing new versions, Blue/
Green and Canary deployment strategies are implemented
using Argo Rollouts or Istio VirtualService.

Metrics collection and visualization are organized using
Prometheus and Grafana. Go runtime indicators and
application-level business metrics are exposed, with
alerts and dashboards configured accordingly. Centralized
logging is implemented via the EFK stack or using Loki +
Fluentd/Promtail. Distributed tracing is enabled through
the OpenTelemetry SDK, allowing for end-to-end request
analysis [9].

Adaptive scaling is performed using HPA and Cluster
Autoscaler with thresholds based on CPU, memory, and
custom application metrics. At the network stack level, L4/
L7 load balancing is configured with support for canary
rules and failover. Peak loads are mitigated using event-
driven queues, and hot data is cached in Redis and processed
asynchronously [10]. Regular profiling with pprof and load
testing using k6/JMeter, in combination with Prometheus
metric correlation, allows timely identification of bottlenecks
and performance optimization [2].

The comprehensive application of the described methods
forms a unified methodology for designing and operating
scalable microservice architectures in Go, capable of
delivering high performance, fault tolerance, and flexibility
under increasing load on e-commerce platforms.

Results and Discussion
Effective organization of computing resources requires
consideration of both horizontal and vertical scaling, as well
as automation of these processes, client request balancing,
asynchronous processing, data caching, and detailed code
profiling.

Page | 45Universal Library of Engineering Technology

Methodology for Building Scalable Microservice Architectures on Go for High‑Load E-Commerce
Platforms

Horizontal scaling implies adding new microservice
instances, which in Kubernetes is implemented by increasing
the number of Pods via the Horizontal Pod Autoscaler based
on CPU, memory, or custom metrics. This approach ensures
virtually unlimited system growth and high fault tolerance
through load distribution; however, it complicates state
synchronization between services and increases the volume
of network communication. Vertical scaling—i.e., increasing
CPU and RAM resources on a single node—remains the
preferred choice when load parallelization is limited.

Autoscaling automation combines the capabilities of

Horizontal Pod Autoscaler and Cluster Autoscaler. The
former dynamically adjusts the number of Pod replicas based
on CPU, memory, or custom metrics, which can be integrated,
for example, via the Prometheus Adapter. The latter adds or
removes nodes in the cloud cluster in response to resource
shortages or surplus. This combination allows for timely
response to workload changes while conserving resources
during idle periods. However, it requires configuring
threshold values to avoid instance count fluctuations and
delays when launching new virtual machines [3]. Table 2
provides a comparison of existing autoscaling mechanisms
in Kubernetes.

Table 2. Comparison of autoscaling mechanisms in Kubernetes [3].

Mechanism What is scaled Trigger metric Advantages Disadvantages
HPA Pod replicas CPU, memory, custom

metrics
Fast response to load Threshold fluctuation, potential

“jitter”
Cluster Autoscaler Cluster nodes Pod resource unavailability Cost savings on idle

nodes
Delay in launching new VMs
(~2–5 min)

Incoming traffic distribution among microservice instances
is handled via L4 (TCP) and L7 (HTTP/gRPC) load balancers.
L4 balancing, based on round-robin or least-connections
methods, provides simple and fast routing at the transport
protocol level, while L7 approaches allow routing based on
URL paths, headers, and support for canary deployments
via Ingress controllers or service mesh solutions like Istio.
Proper configuration of load balancing significantly improves
system resilience and reduces average response time.

To offload synchronous requests and increase throughput,
it is advisable to use asynchronous processing via message
brokers (RabbitMQ, Kafka). In this model, the frontend
service publishes events, and background systems process
them independently of arrival time—this “smooths out”
peak loads and increases service resilience. However, it also
introduces the need to address eventual consistency and
debug distributed operation scenarios.

Caching the results of frequently repeated queries in an in-
memory cache (Redis, Memcached) reduces database load
and minimizes data retrieval latency. Common strategies—
such as read-through, write-behind, TTL (time-to-live), and
LRU eviction policies—require balancing data freshness with
memory allocation and implementing tools for monitoring
and cleaning up stale entries.

Load testing and profiling of Go-executed modules help
identify bottlenecks and optimize hot code paths. The built-
in pprof package allows CPU and heap profiling, and load
testing tools (k6, JMeter) simulate both short bursts and
prolonged peak loads. Combined monitoring in Prometheus
and visualization in Grafana enable real-time adjustment of
autoscaling thresholds and service resource profiles.

The synergy of horizontal and vertical scaling, automatic
resource expansion, traffic balancing, asynchronous
architecture, deliberate caching, and regular profiling ensures

near-linear performance growth of Go-based microservices
even under extreme loads.

The analysis of the methodology demonstrates that
the combination of Go and modern DevOps practices
(containerization, CI/CD, monitoring) ensures high fault
tolerance and rapid time-to-market for new features.
Distributed API-driven communication via gRPC and Kafka
enables horizontal scaling while maintaining predictable
performance and low latency. In the future, it is advisable
to expand the methodology through automatic analysis of
business performance metrics (A/B testing, ROI analysis) and
the implementation of GitOps practices for full infrastructure-
as-code management, allowing technical KPIs to be directly
linked to financial and product goals of the company.

Conclusion

The paper presents a methodology for designing and
implementing scalable microservice systems in Go, combining
architectural practices, infrastructure provisioning,
and optimization strategies. The approach is based on
decomposing the system into bounded contexts and selecting
communication protocols that ensure both performance and
type safety: gRPC is used for internal service interactions,
while REST is reserved for external APIs, providing a balance
between response speed and transmission reliability.

The infrastructure component of the methodology includes
the creation of lightweight multi-stage Docker images and the
use of Kubernetes controllers (Deployment, Horizontal Pod
Autoscaler, Cluster Autoscaler, StatefulSet), enabling effective
cluster state management and automated application scaling.
CI/CD pipelines with integrated Blue/Green and Canary
deployment strategies allow updates to be delivered without
downtime and new service versions to be tested directly in
production environments.

Page | 46Universal Library of Engineering Technology

Methodology for Building Scalable Microservice Architectures on Go for High‑Load E-Commerce
Platforms

To ensure high system performance and resilience, scaling
strategies were developed: combining horizontal and
vertical scaling, autoscaling and load balancing, along with
asynchronous message processing through Kafka and
RabbitMQ, and distributed caching using Redis. System
profiling via pprof helps identify bottlenecks and supports
near-linear throughput growth as the number of replicas
increases. The described development and operational
patterns are easily adaptable to various domains, enabling
the timely delivery of new features while maintaining service
maintainability.

At the same time, the study identifies certain limitations: the
economic aspects of cloud resource usage under conditions of
extreme autoscaling were not analyzed, nor was the impact of
network latencies in multi-regional deployments on overall
performance. Further development of the methodology may
involve the introduction of AI-based load forecasting systems,
the expansion of service mesh capabilities (Istio, Linkerd)
for traffic management, and the implementation of seamless
data store migrations with zero downtime. The integration
of Go’s capabilities, advanced DevOps practices, and proven
design patterns enables the creation of high-performance,
fault-tolerant, and cost-effective microservice architectures
that optimally meet the requirements of modern e-commerce
applications.

References
Lattner C. et al. MLIR: Scaling compiler infrastructure 1.	
for domain specific computation //2021 IEEE/ACM
International Symposium on Code Generation and
Optimization (CGO). – IEEE, 2021. – pp. 2-14.

Nookala G. Microservices and Data Architecture: Aligning 2.	
Scalability with Data Flow //International Journal of
Digital Innovation. – 2023. – Vol. 4 (1). – pp. 1-9.

Peter H. Exploring Cloud-Native Modular Architectures 3.	
for AI-Driven Sales Pipeline Optimization: Opportunities
and Challenges. – 2023. – pp. 1-14.

Lewis J., Fowler M. Microservices: a definition of this 4.	
new architectural term //MartinFowler. com. – 2014. –
Vol. 25 (14-26). – pp. 12.

Di Carlo M. et al. Ci-cd practices at SKA //Software and 5.	
Cyberinfrastructure for Astronomy VII. – SPIE. - 2022. –
Vol. 12189. – pp. 28-41.

Wang R. et al. A new deployment method of the archiver 6.	
application with Kubernetes for the CAFe facility //
Radiation Detection Technology and Methods. – 2022. –
Vol. 6 (4). – pp. 508-518.

Lee Y., Liu Y. Using refactoring to migrate REST 7.	
applications to gRPC //Proceedings of the 2022 ACM
Southeast Conference. – 2022. – pp. 219-223.

Mondal S. K. et al. Kubernetes in IT administration and 8.	
serverless computing: An empirical study and research
challenges //The Journal of Supercomputing. – 2022. –
pp. 1-51.

Park S. et al. Machine learning based signaling ddos 9.	
detection system for 5g stand alone core network //
Applied Sciences. – 2022. – Vol. 12 (23). – pp. 1-9.

I.C. Donca, O.P. Stan, P., Miclea L. Proposed model for 10.	
a Microservices Cluster //2020 21th International
Carpathian Control Conference (ICCC). – IEEE. - 2020. –
pp. 1-5.

Citation: Ruslan Tsyganok, “Methodology for Building Scalable Microservice Architectures on Go for High‑Load
E-Commerce Platforms”, Universal Library of Engineering Technology, 2024; 1(2): 42-46. DOI: https://doi.org/10.70315/
uloap.ulete.2024.0102007.

Copyright: © 2024 The Author(s). This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

