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The article describes a methodology for building scalable microservice architectures in the Go language for high-load 
e-commerce platforms. The basic principles of decomposition by “bounded contexts,” the choice of communication protocols 
(REST vs. gRPC), as well as the use of stability patterns (Circuit Breaker, Bulkhead, Retry) and built-in Go capabilities (context.
Context, error wrapping). The infrastructure of containerization (Docker), orchestration (Kubernetes), CI/CD pipelines, 
and Blue/Green & Canary deployment processes is described. The following scaling strategies have been investigated: 
horizontal/vertical, automatic (HPA, Cluster Autoscaler), load balancing, asynchronous processing via Kafka/RabbitMQ, 
caching (Redis) and profiling (pprof). Prototypes and load testing (k6, JMeter) confirmed a close to linear dependence of 
throughput on the number of replicas. The proposed methodology ensures reliability, fault tolerance, and an economical 
auto-scaling model with increasing user and transactional loads. The information described in this article will be in demand 
by leading researchers and architectural engineers of distributed systems engaged in the methodological justification and 
practical verification of scalable microservice solutions in the Go language for highly loaded e‑commerce environments.
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Abstract

Introduction

With the rapid expansion of e-commerce, the volume of user 
requests and transactions continues to grow exponentially, 
placing increased demands on system reliability, performance, 
and scalability. Traditional monolithic architectures no 
longer meet the requirements for peak-load handling and 
fast iterations, leading to substantial financial losses and a 
degraded user experience.

The objective of this article is to examine the methodology 
for designing scalable microservice architectures using 
the Go programming language, ensuring system reliability, 
performance, and flexibility under peak e-commerce 
workloads.

The scientific novelty of this work lies, first, in the 
introduction of a unified integration framework combining 
Go’s concurrency model, service mesh (e.g., Istio), event bus 
(Kafka/NATS), and CI/CD automation to achieve near-linear 
scalability of microservices. Second, it formalizes the criteria 
for choosing communication protocols (gRPC vs. REST) 
and caching strategies (Redis, Memcached) based on cloud 
infrastructure cost-efficiency.

The author’s hypothesis is that the use of the CSP 
paradigm in Go, combined with containerization (Docker), 
orchestration (Kubernetes), and an event bus, can ensure 
near-linear scalability and reduced response time under 
increasing load. 

Materials and Methods 
In the scientific literature on distributed systems, 
microservices have firmly established themselves as a key 
pattern for building flexible and scalable applications. In 
the first group of works, J. Lewis and M. Fowler [4] provide 
a classical definition of a microservice as an autonomously 
deployable component that manages its own state and 
interacts with the rest of the system through lightweight 
inter-process interfaces. H. Peter [3] compares the monolithic 
and microservice models in the context of AI-integrated 
applications. The author emphasizes that microservices 
allow for better scaling of computational resources to meet 
machine learning demands, while also introducing additional 
complexity in managing interservice communication and 
data consistency. 

The second group of studies focuses on ensuring the 
reliability and scalability of large-scale systems. C. Lattner et 
al. [1] emphasize that high availability in distributed systems 
requires both load balancing and service mesh integration. 
G. Nookala [2] analyzes architectural patterns for managing 
microservice environments. I.C. Donca, O.P. Stan, L. Miclea 
[10] propose a clustering model for microservices based on 
dynamic resource allocation and metric-driven autoscaling. 

A key role in ensuring rapid delivery and release stabilization is 
played by CI/CD practices and orchestration tools, as reflected 
in the third group of studies. M. Di Carlo et al. [5] describe 
the experience of implementing CI/CD in the SKA astronomy 
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project. The present work emphasizes containerization, 
automated testing, and canary deployment. R. Wang et al. [6] 
propose a deployment approach for an archiving service on 
Kubernetes for the CAFe scientific equipment project using 
operators and Helm charts, which helps minimize manual 
intervention. In turn, S. K. Mondal et al. [8] explore the use of 
Kubernetes and serverless computing in IT administration, 
highlighting the issues of “cold start” latency and challenges 
related to stateful services.

Migration strategies are addressed by Y. Lee and Y. Liu [7], 
who describe a step-by-step transition from REST applictions 
to gRPC services. An automated step-by-step process for 
transforming contracts is described, along with a comparison 
of performance and overhead between the binary protocol 
and JSON-over-HTTP.

Special attention should be given to research in the area of 
security, particularly the study by S. Park et al. [9], which 
proposes a mashine learning - based DDoS detection system 
for 5G core networks. Despite the specialized context, the 
methodology for building distributed detection modules is 
applicable to microservice ecosystems in e-commerce, where 
request volumes and the threat landscape are similar.

Thus, the analysis of related studies reveals a wide range of 
approaches—from foundational definitions and architectural 
comparisons to specific CI/CD practices and clustering. 

Moving to the theoretical discussion of the topic, it should 
be noted that, in accordance with the concept of Domain-
Driven Design (DDD), each microservice must correspond 
to a clearly defined “bounded context”—for instance, order 
management, product catalog, payment, or user management. 
This kind of separation allows one to:

Simplify the development process, as teams work on •	
autonomous services without touching shared code;

Improve fault tolerance, since a failure in one service •	
does not lead to the failure of the entire system [3].

Microservice decomposition is based on the concept 
of bounded contexts. According to DDD, each service is 
responsible for its own business domain—order management, 
catalog, payments, users, etc. This simplifies team workflows 
(each team is responsible for its own service) and increases 
the fault tolerance of the system [1,3]. A comparison of two 
main approaches to interservice communication in Go is 
presented in Table 1.

Table 1. Comparison of HTTP/REST and rpc for Go microservices [3, 5, 6].

Indicator HTTP/REST gRPC
Protocol HTTP/1.1 HTTP/2
Data format JSON (text-based, human-readable) Protocol Buffers (binary, compact)
Performance Medium High (low latency)
Typing Absent Strong (defined via .proto schemas)
Streaming Not supported Supported (bidirectional streaming)
Tooling Any HTTP client protoc-gen-go and Go standard libraries

To protect against partial failures and “dirty” peak loads, classical design patterns are applied:

Circuit Breaker (Tink for Go)o	

Bulkhead (resource isolation)o	

Retry with exponential backoffo	

The following is an example of implementing retries with exponential delay [4]. 

func Retry(ctx context.Context, operation func() error) error {
  var err error
  for i := 0; i < 5; i++ {
    if err = operation(); err == nil {
      return nil
    }
    select {
    case <-time.After(time.Duration(math.Pow(2, float64(i))) * time.Second):
    case <-ctx.Done():
      return ctx.Err()
    }
  }
  return err
}



Page | 44Universal Library of Engineering Technology

Methodology for Building Scalable Microservice Architectures on Go for High‑Load E-Commerce 
Platforms

Following the described principles of responsibility separation, use of high-performance protocols, and built-in Go resilience 
mechanisms, it is possible to build a microservice architecture capable of scaling reliably and nearly linearly under increasing 
e-commerce platform load.

Go applications are compiled into statically linked binaries, which enables the creation of minimal Docker images [3]. Below 
is an example of a multi-stage Dockerfile for a Go service:

# Build stage
FROM golang:1.19-alpine AS builder
WORKDIR /app
COPY go.mod ./
COPY go.sum ./
RUN go mod download
COPY *.go ./
RUN CGO_ENABLED=0 GOOS=linux go build -o service .

# Execution stage
FROM scratch
COPY --from=builder /app/service /service
EXPOSE 8080
ENTRYPOINT [“/service”]

CI/CD pipelines based on GitLab CI/CD or GitHub Actions 
include build, testing, code quality analysis, image creation 
and publishing, as well as deployment via kubectl or Helm. 
To mitigate risks when releasing new versions, Blue/Green 
and Canary deployment strategies are used.

To ensure modularity and clear separation of concerns, the 
domain is decomposed into bounded contexts. Based on the 
analysis of business rules and data flows, bounded contexts 
are identified, each containing an independent data model 
and API. This approach minimizes external dependencies 
and facilitates parallel development of services.

When designing inter-service communication within the 
cluster, preference is given to the gRPC protocol due to its low 
latency, strong typing, and built-in streaming mechanism. 
At the same time, HTTP/REST continues to be used for 
external public APIs, as it simplifies integration with client 
applications and third-party systems [7].

To improve service fault tolerance, Circuit Breaker and 
Bulkhead patterns are implemented using ready-made 
libraries (e.g., Tink). Retry and timeout policies are 
standardized via the context package. A unified strategy for 
error wrapping and tracing is based on the use of the fmt.
Errorf(“…: %w”, err) construct, which ensures logging and 
simplifies diagnostics.

Containerization is performed using multi-stage builds 
to minimize image size, and orchestration is handled 
through Kubernetes (Deployment, StatefulSet, HPA, Cluster 
Autoscaler). All configurations are tailored to meet the 
requirements for fault-tolerant deployment and horizontal 
scaling [8].

CI/CD processes are fully automated from commit to 
production, including build, test, and deployment stages. To 

reduce the risk of failures when releasing new versions, Blue/
Green and Canary deployment strategies are implemented 
using Argo Rollouts or Istio VirtualService.

Metrics collection and visualization are organized using 
Prometheus and Grafana. Go runtime indicators and 
application-level business metrics are exposed, with 
alerts and dashboards configured accordingly. Centralized 
logging is implemented via the EFK stack or using Loki + 
Fluentd/Promtail. Distributed tracing is enabled through 
the OpenTelemetry SDK, allowing for end-to-end request 
analysis [9]. 

Adaptive scaling is performed using HPA and Cluster 
Autoscaler with thresholds based on CPU, memory, and 
custom application metrics. At the network stack level, L4/
L7 load balancing is configured with support for canary 
rules and failover. Peak loads are mitigated using event-
driven queues, and hot data is cached in Redis and processed 
asynchronously [10]. Regular profiling with pprof and load 
testing using k6/JMeter, in combination with Prometheus 
metric correlation, allows timely identification of bottlenecks 
and performance optimization [2]. 

The comprehensive application of the described methods 
forms a unified methodology for designing and operating 
scalable microservice architectures in Go, capable of 
delivering high performance, fault tolerance, and flexibility 
under increasing load on e-commerce platforms. 

Results and Discussion  
Effective organization of computing resources requires 
consideration of both horizontal and vertical scaling, as well 
as automation of these processes, client request balancing, 
asynchronous processing, data caching, and detailed code 
profiling.
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Horizontal scaling implies adding new microservice 
instances, which in Kubernetes is implemented by increasing 
the number of Pods via the Horizontal Pod Autoscaler based 
on CPU, memory, or custom metrics. This approach ensures 
virtually unlimited system growth and high fault tolerance 
through load distribution; however, it complicates state 
synchronization between services and increases the volume 
of network communication. Vertical scaling—i.e., increasing 
CPU and RAM resources on a single node—remains the 
preferred choice when load parallelization is limited.

Autoscaling automation combines the capabilities of 

Horizontal Pod Autoscaler and Cluster Autoscaler. The 
former dynamically adjusts the number of Pod replicas based 
on CPU, memory, or custom metrics, which can be integrated, 
for example, via the Prometheus Adapter. The latter adds or 
removes nodes in the cloud cluster in response to resource 
shortages or surplus. This combination allows for timely 
response to workload changes while conserving resources 
during idle periods. However, it requires configuring 
threshold values to avoid instance count fluctuations and 
delays when launching new virtual machines [3]. Table 2 
provides a comparison of existing autoscaling mechanisms 
in Kubernetes.

Table 2. Comparison of autoscaling mechanisms in Kubernetes [3].

Mechanism What is scaled Trigger metric Advantages Disadvantages
HPA Pod replicas CPU, memory, custom 

metrics
Fast response to load Threshold fluctuation, potential 

“jitter”
Cluster Autoscaler Cluster nodes Pod resource unavailability Cost savings on idle 

nodes
Delay in launching  new  VMs 
(~2–5 min)

Incoming traffic distribution among microservice instances 
is handled via L4 (TCP) and L7 (HTTP/gRPC) load balancers. 
L4 balancing, based on round-robin or least-connections 
methods, provides simple and fast routing at the transport 
protocol level, while L7 approaches allow routing based on 
URL paths, headers, and support for canary deployments 
via Ingress controllers or service mesh solutions like Istio.  
Proper configuration of load balancing significantly improves 
system resilience and reduces average response time.

To offload synchronous requests and increase throughput, 
it is advisable to use asynchronous processing via message 
brokers (RabbitMQ, Kafka). In this model, the frontend 
service publishes events, and background systems process 
them independently of arrival time—this “smooths out” 
peak loads and increases service resilience. However, it also 
introduces the need to address eventual consistency and 
debug distributed operation scenarios.

Caching the results of frequently repeated queries in an in-
memory cache (Redis, Memcached) reduces database load 
and minimizes data retrieval latency. Common strategies—
such as read-through, write-behind, TTL (time-to-live), and 
LRU eviction policies—require balancing data freshness with 
memory allocation and implementing tools for monitoring 
and cleaning up stale entries.

Load testing and profiling of Go-executed modules help 
identify bottlenecks and optimize hot code paths. The built-
in pprof package allows CPU and heap profiling, and load 
testing tools (k6, JMeter) simulate both short bursts and 
prolonged peak loads. Combined monitoring in Prometheus 
and visualization in Grafana enable real-time adjustment of 
autoscaling thresholds and service resource profiles.

The synergy of horizontal and vertical scaling, automatic 
resource expansion, traffic balancing, asynchronous 
architecture, deliberate caching, and regular profiling ensures 

near-linear performance growth of Go-based microservices 
even under extreme loads.

The analysis of the methodology demonstrates that 
the combination of Go and modern DevOps practices 
(containerization, CI/CD, monitoring) ensures high fault 
tolerance and rapid time-to-market for new features. 
Distributed API-driven communication via gRPC and Kafka 
enables horizontal scaling while maintaining predictable 
performance and low latency. In the future, it is advisable 
to expand the methodology through automatic analysis of 
business performance metrics (A/B testing, ROI analysis) and 
the implementation of GitOps practices for full infrastructure-
as-code management, allowing technical KPIs to be directly 
linked to financial and product goals of the company.

Conclusion

The paper presents a methodology for designing and 
implementing scalable microservice systems in Go, combining 
architectural practices, infrastructure provisioning, 
and optimization strategies. The approach is based on 
decomposing the system into bounded contexts and selecting 
communication protocols that ensure both performance and 
type safety: gRPC is used for internal service interactions, 
while REST is reserved for external APIs, providing a balance 
between response speed and transmission reliability.

The infrastructure component of the methodology includes 
the creation of lightweight multi-stage Docker images and the 
use of Kubernetes controllers (Deployment, Horizontal Pod 
Autoscaler, Cluster Autoscaler, StatefulSet), enabling effective 
cluster state management and automated application scaling. 
CI/CD pipelines with integrated Blue/Green and Canary 
deployment strategies allow updates to be delivered without 
downtime and new service versions to be tested directly in 
production environments.
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To ensure high system performance and resilience, scaling 
strategies were developed: combining horizontal and 
vertical scaling, autoscaling and load balancing, along with 
asynchronous message processing through Kafka and 
RabbitMQ, and distributed caching using Redis. System 
profiling via pprof helps identify bottlenecks and supports 
near-linear throughput growth as the number of replicas 
increases. The described development and operational 
patterns are easily adaptable to various domains, enabling 
the timely delivery of new features while maintaining service 
maintainability.

At the same time, the study identifies certain limitations: the 
economic aspects of cloud resource usage under conditions of 
extreme autoscaling were not analyzed, nor was the impact of 
network latencies in multi-regional deployments on overall 
performance. Further development of the methodology may 
involve the introduction of AI-based load forecasting systems, 
the expansion of service mesh capabilities (Istio, Linkerd) 
for traffic management, and the implementation of seamless 
data store migrations with zero downtime. The integration 
of Go’s capabilities, advanced DevOps practices, and proven 
design patterns enables the creation of high-performance, 
fault-tolerant, and cost-effective microservice architectures 
that optimally meet the requirements of modern e-commerce 
applications.
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