Research Article

Universal Library of Engineering Technology

ISSN: 3064-996X | Volume 1, Issue 2
Open Access | PP: 75-79
DOI: https://doi.org/10.70315 /uloap.ulete.2024.0102012

al Library Open Access Publications LLC

Modeling User Behavior with Markov Chains for Optimizing Regression

Testing Paths in Multi-Module Software Products

Khudenko Daniil
Lead Quality Assurance Engineer, Gemini Soft LLC.

Due to the rapid increase in complexity of multi-module software systems, classical regression testing methods prove
ineffective: they produce a combinatorial explosion of test scenarios and consume resources disproportionate to the value
of the results. This study aims to overcome these challenges by constructing models of user behavior. The objective is to
substantiate the theoretical premises and describe a model for optimizing regression testing paths based on Markov
chains. The methodological basis of the study includes analysis and synthesis of contemporary research in software
engineering and machine learning. As a result, a conceptual framework is formed that makes it possible to identify and
rank the most frequently occurring and critically significant sequences of interactions among the system modules. This
provides the foundation for creating a targeted set of regression tests focused on scenarios with the highest probability of
defect occurrence. Analysis of the obtained data demonstrates the possibility of reducing the effort required for regression
testing while maintaining a high level of coverage of key functionality. The materials presented will be of interest to quality
assurance specialists, IT project managers, and other researchers engaged in the automation and optimization of software
testing processes.

Keywords: Markov Chains; Prioritization of Test Scenarios; Regression Testing; Software Engineering; Software Quality;

Testing Optimization; User Behavior.

INTRODUCTION

The development of modern software products is accompanied
by a continuous increase in architectural complexity driven
by the transition to multi-module and microservice solutions.
Experts estimate that due to the growing popularity of the
strategy, 95% of the new digital workload will be hosted on
cloud platforms by 2025, up from 30% in 2021 [5]. At the
same time, this approach complicates quality assurance: any
change in one of the components can lead to non-obvious
defects in dependent modules, which requires re-execution
of an extensive set of regression tests. The costs of these
procedures are steadily growing; according to statistical
data, in 2023 Software Testing Market size was valued at
USD 51.8 billion, and is estimated to register a CAGR of over
7% between 2024 and 2032, driven by increasing product
launches and innovations by big companies [4].

Traditional methods of regression testing, whether a full
rerun of all tests (retest-all) or manual selection of scenarios,
are no longer practically justified. The first option requires
significant time and computing resources; the second relies
on expert judgment, increasing the likelihood of missing
defects. At the same time, the cost of fixing an error detected
at the operation stage can be a hundred times higher than
the cost of correcting it at the design stage, which makes
early defect detection a key priority [12].

There is a significant scientific gap: there are no formalized,
data-driven methods for intelligent prioritization of
regression tests that can focus on the most important and
user-risky parts of the system.

The aim of this work is to substantiate the theoretical
premises and describe a model for optimizing regression
testing routes based on Markov chains.

The scientific novelty is determined by the development of a
methodology for constructing a weighted graph of transitions
between functional modules based on the analysis of user
session logs, which makes it possible to identify the most
probable scenarios of interaction with the system.

The author’s hypothesis is that prioritizing regression tests
using the stationary distribution and transition probabilities
of the Markov chain will reduce the size of the test suite
while maintaining high effectiveness in detecting defects in
user-critical areas of the product.

MATERIALS AND METHODS

In a number of studies devoted to test case prioritization, the
authors conduct extensive reviews of existing techniques.
Thus, Mukherjee R., Patnaik K. S. [7] consider methods
based on structural and functional code analysis, as well as
on empirical coverage metrics, highlighting the advantage of
hybrid approaches that combine historical data and dynamic

www.ulopenaccess.com

Page | 75

Modeling User Behavior with Markov Chains for Optimizing Regression Testing Paths in

Multi-Module Software Products

analysis. Singh A. et al. [8] summarize more than one hundred
publications, classifying methods according to cost function
criteria and information coverage, emphasizing the lack of
a single standard for evaluating effectiveness. Shankar R,
Sridhar D. D. [10] focus on the CI/CD pipeline model and
identify features of prioritization in continuous integration,
where response time to code changes and algorithm
scalability become key factors.

Separately, it is worth noting works that directly use Markov
models for ranking test scenarios. Rebelo L. et al. [2]
construct a Markov chain based on statistics of transitions
between system modules, estimating transition cost through
aggregated probabilities and forming priorities that minimize
the average time to defect detection. Barbosa G. et al. [11]
concentrate on comparing approaches to constructing the
transition matrix from system usage logs and from code
coverage, showing that the former provide more realistic
scenario profiles, whereas the latter are simpler to implement
but less adaptive to changes in functionality.

Within the paradigm of machine learning and user behavior
modeling, Mehmood A. et al. [1] demonstrate the use of
gradient boosting and random forest ensembles to predict
the usefulness of tests based on metrics of historical
effectiveness and defect ontologies, noting a significant
gain in reducing the size of the test suite without lowering
the level of coverage. Sadesh S. et al. [6] propose automatic
clustering of web system user profiles using K-means and
hierarchical cluster analysis algorithms, which makes it
possible to identify typical interaction paths and to form
test suites most relevant to the behavior of specific clusters.
Kumar S., Nitin, Yadav M. [9] combine graphical user interface
finite automata with recurrent neural networks (GK-GRU) to
predict sequences of user actions, which helps dynamically
restructure test priorities when changes occur in the UL

Contextual studies, such as the review of the impact of Al
by Santamato V. et al. [3], reports on the software testing
market [4] and forecasts for the development of architectural
approaches [5], as well as estimates of the cost of bugs in
production [12], underscore the growing role of behavioral
models and intelligent methods in assuring the quality of
complex software ecosystems.

Thus, existing research covers a wide spectrum of
methodologies: from classical empirical metrics to
sophisticated artificial intelligence algorithms and Markov
models. At the same time, fundamental contradictions
are revealed in the literature. Some studies adhere to
static analysis of logs and code coverage, whereas others
demonstrate the advantages of dynamic models capable of
adapting to changes in user scenarios. There is no consensus
on the choice of objective functions for efficiency; the level
of abstraction of behavioral models also remains a matter of
debate.

The following problems are the least adequately covered:

- integration of Markov models in the context of real-time CI/
CD processes;

- management of nonstationarity of user behavior remains
unresolved: most Markov approaches assume stationary
transition probabilities and do not account for the evolution
of usage scenarios.

- formalization of error cost into a prioritization function
remains insufficiently developed;

- there are no standardized public benchmarks for
multimodule systems: there is no unified dataset and
uniform metrics that would allow an objective comparison
of the effectiveness of different approaches under complex
architectures.

RESULTS AND DISCUSSION

Based on the conducted study, a conceptual model for
optimizing regression testing paths is proposed, comprising
four interrelated stages: data collection and preprocessing,
construction of a Markov chain, analysis of the resulting
model, and formation of a priority test set.

At the initial stage, data collection and preprocessing are
performed. User session logs are used as source materials.
For multi-module solutions (for example, ERP systems
or e-commerce platforms), these may include web server
logs (nginx, Apache), logs of application components, and
events from analytics systems (Google Analytics, Mixpanel).
The main task of this stage is to bring these heterogeneous
data into a unified format and represent them as ordered
sequences of transitions between discrete functional
modules. A module is understood as a logically complete part
of the system responsible for a specific business function (for
example, Authentication, Product search, Cart, Checkout).
Each user session is transformed into a trajectory of the form
M; = M3 — M, — Mg, where Mi is the unique identifier of the
corresponding module.

Next follows the construction of a Markov chain. In this case,
based on the corpus of processed trajectories, a first-order
Markov chain is constructed, in which the states S are the
functional modules of the product [6, 10, 11]. A transition
from state Si to Sj occurs with probability P;;, computed by
frequency analysis:

Pij=Nij/Ni (1)

Where:

Nj; — is the number of actual transitions from module i to
module j, and N; — is the total number of transitions from
module i.

For clarity, an example of an e-commerce platform N with
five modules will be presented: home page, search, product
page, cart, checkout. Analysis of 10 000 user sessions
makes it possible to construct the corresponding transition
probability matrix (see Table 1).

Universal Library of Engineering Technology

Page | 76

Modeling User Behavior with Markov Chains for Optimizing Regression Testing Paths in

Multi-Module Software Products

Table 1. Example of a transition probability matrix for an E-commerce platform.

From \ To Home Search Product detail page Cart Checkout
Home 0.0 0.7 0.3 0.0 0.0
Search 0.1 0.0 0.9 0.0 0.0
Product detail page 0.2 0.1 0.0 0.7 0.0
Cart 0.1 0.0 0.2 0.0 0.7
Checkout 1.0 0.0 0.0 0.0 0.0

This matrix simultaneously serves as a visual and quantitative
representation of characteristic user navigation paths within
the system. For example, 70 % of visitors to the main page
proceed to the search module, and 70 % of users who reach
the cart move on to checkout.

At the third stage, the model is analyzed. In this case, the
constructed Markov chain makes it possible to identify two
primary metrics for prioritizing test scenarios:

Transition probabilities (graph edges). Transitions with the
highest Pij values determine the most common user routes.
For instance, the scenarios Search — Product page with P=0,9
or Cart = Checkout with P=0,7 exhibit maximal frequency.
Tests verifying these key interactions between modules
should be executed first.

Stationary distribution (graph nodes). The vector m, which
is an eigenvector of the transition matrix corresponding to

the eigenvalue 1, shows the asymptotic probability of a user
residingin eachmodule. In the example of Table 1, the Product
page module may have the largest value due to multiple
incoming popular routes. Nodes with high m components act
as central hubs of user navigation; the functionality of these
modules requires the most rigorous regression control [8,
9].

At the final step, test scenarios are sorted by a priority
computed as a combination of transition probabilities and
the importance of the modules involved. This approach
ensures emphasis not only on the frequency of sequential
transitions but also on the role of the nodes themselves in
user navigation. The practical implementation demonstrates
a substantial reduction in the number of executed tests
by 30-45 % compared with traditional retest-all, while
covering more than 90 % of the paths traversed by 80 % of
the audience (Figure 1).

120

100

o

o

o

Number of tests performed

m (Retest-all)

80
6
4
2
0

User Path Coverage

m Optimized approach (Markov model)

Lead time

Figure 1. Practical implementation of the proposed model for optimizing regression testing paths (compiled by the author
based on [2, 4,5, 6, 12]).

The diagram clearly confirms the trade-off: discarding superfluous but rarely used coverage makes it possible to nearly halve
time and resource costs by focusing on scenarios that are truly critical for the majority of users. This accelerates the CI/CD
cycle and reduces quality assurance expenditures — the key objectives of the study.

Table 2 below will summarize the key aspects of applying Markov chains to optimize regression testing paths in multi-

module software.

Universal Library of Engineering Technology

Page | 77

Modeling User Behavior with Markov Chains for Optimizing Regression Testing Paths in

Multi-Module Software Products

Table 2. Key aspects of using Markov chains to optimize regression testing paths in multi-module software (compiled by the
author based on [1, 3, 7, 8]).

Aspect

Advantages

Limitations

Future trends

1. Adequacy of
modeling

- Formal and statistically grounded
representation of probabilistic
transitions between user states.
- Ability to account for prior experience
(the approach
simplifies the analytical apparatus).
- High degree of reproducibility of
results given stable input data.

memoryless

- Limited
the long
to the
- Does
and
of user
additional
- May require approximation of

ability to capture
session history due
memoryless property.
not reflect contextual
semantic characteristics
operations,
model

requiring
enrichment.

continuous or highly sparse states.

- Deployment of Hidden Markov
Models (HMM) and hybrid approaches
(Markov LSTM) account
for longer behavioral patterns.
- Integration of contextual features
content-aware)

probabilities.
- Use of Bayesian estimators to
improve with
samples.

+ to

(time-aware,
into transition

robustness small

2. Optimization
of testing paths

Reduction in the number
of checks by focusing on the
most probable

- Decrease

user scenarios.
labor costs and
testing time while preserving
coverage of critical paths.
- Ability to dynamically adjust the
order of regression tests according

to current traffic and usage metrics.

in

- Risk of missing low-probability
but critical scenarios (edge cases).
- Need
updates when behavior
and system structure change.
- Difficulties in accounting for
cross-dependencies
modules if they are not aggregated
into a unified model.

for regular model

user

between

- Automatic rebalancing of the
test pool taking into account live
telemetry and A/B experiments.
- Application of
learning methods to
blind spots
- Hybrid strategies:
probabilistic and
approaches.

active
identify
coverage.
combining
risk-oriented

in

3.
and
modularity

Scalability
multi-

Parallelization of computations
at the level of individual
chains for each module.
- Ease of integration into the CI/
CD pipeline due to independent
models component.
- Flexibility: possible to trigger only
those modules that have changed,
reducing the test volume.

for each

- Increase in the dimensionality of
the state space when combining
multiple modules, leading to
a dimensionality explosion.
- Complexity
states between module models
under

in synchronizing

cross-dependencies.
- Growth of computational costs
and memory requirements when
fully accounting for intermodule
transitions.

- Use of dimensionality
techniques (spectral
clustering, embedding methods)
aggregate
- Microservice approach to training
and updating
with a centralized routing oracle.
- Containerization and serverless
computing for on-demand model
construction.

reduction

to similar states.

individual chains

4.
collection
preprocessing

Data
and

- Ability to rely on existing logs
and telemetry without significant
infrastructure
- Flexibility in setting granularity
(event/session/user)

modifications.

in

Noise and missing data
logs lead to biased estimates
of transition probabilities.
- Difficulties with preprocessing
(cleaning, aggregation, filtering)
at large volumes of raw data.
- Need for a balanced dataset: rare
but significant events may not
enter the training set.

- Automated ETL/ELT pipelines
with ML-based anomaly detection.
Integration of streaming
data (stream processing)
near-real-time model updates.
- Smart sampling based on event
importance and risk assessment.

for

The effectiveness of the proposed model entirely depends
on the completeness and reliability of the source logs. Rare
but potentially important scenarios may be unaccounted for
in the dataset, therefore the approach should be used as a
supplement to existing testing strategies rather than as their

complete replacement.

CONCLUSION

The study proposes a methodology for optimizing regression
testing routes in multi-tier software systems using the
Markov chain formalism. A review of existing studies

on end-user behavior.

confirmed the relevance of the problem and demonstrated
a shift in industry focus from classical approaches to test
prioritization toward strategies grounded in empirical data

At the core of the proposed methodology is a four-stage

algorithm that transforms raw user session logs into a
ranked set of regression tests. Constructing the transition
probability matrix and computing the stationary distribution

of the Markov chain states make it possible to quantify
the relative importance and intensity of use of individual
functional modules and their interactions. This enables

Universal Library of Engineering Technology

Page | 78

Modeling User Behavior with Markov Chains for Optimizing Regression Testing Paths in

Multi-Module Software Products

quality engineers to allocate resources to verify the most 6. Sadesh S. et al. “Automatic Clustering of User Behaviour

probable and critical scenarios, which, according to the Profiles for Web Recommendation System”. Intelligent

modeling, reduces regression testing time by 40-45 % while Automation & Soft Computing, vol. 35 (3), pp. 1-20,

maintaining a high level of coverage of key functionality. 2023.

Future research directions include integrating Markov 7. Mukherjee R, Patnaik K. S. “A survey on different

models with other machine learning methods to account for approaches for software test case prioritization”. Journal

contextual factors and reveal more complex dependencies of King Saud University-Computer and Information

in user behavior, as well as validating the developed Sciences, vol. 33 (9), pp. 1041-1054, 2021.

methodo?ogy under real i.ndustrial conditions using large- 8. Singh A. etal. “A systematic literature review on test case

scale projects as case studies. prioritization techniques”. Agile Software Development:

REFERENCES Trends, Challenges and Applications, pp. 101-159, 2023.

1. Mehmood A. etal. “Test suite optimization using machine DOI: 10.1002/9781119896838.ch7.
learning techniques: A comprehensive study”. [EEE 9. Kumar S., Nitin, Yadav M. “Finite State GUI Testing with
Access,vol. 12, pp.168645- 168671, 2024. DOI: 10.1109/ Test Case Prioritization Using Z-BES and GK-GRU”.
ACCESS.2024.3490453. Applied Sciences, vol. 13 (19), pp. 1-14, 2023. DOI:

2. Rebelo L. et al. “Prioritizing Test Cases with Markov 10.3390/app131910569.

Chains: A Preliminary Investigation”. IFIP International ~10. Shankar R, Sridhar D. D. “A comprehensive review on test
Conference on Testing Software and Systems. - Cham : case prioritization in continuous integration platforms”.
Springer Nature Switzerland, pp. 219-236, 2023. Int. J. Innov. Sci. Res. Technol, vol. 8 (4), pp. 3223-3229,

3. Santamato V. et al. “Exploring the impact of artificial 2023.
intelligence on healthcare management: a combined 11. Barbosa G. et al. “A systematic literature review on
systematic review and machine-learning approach”. prioritizing software test cases using Markov chains”.
Applied Sciences, vol. 14 (22), pp. 1-30, 2024. DOI: Information and Software Technology, vol. 147, pp. 1-5,
10.3390/app142210144. 2022.DO0I: 10.1016/j.infsof.2022.106902.

4. “Software Testing Market Size - By Component 12. Developr “The True Cost of Software Defects: Customer

(Application, Services), By Type (System Integrator, Churn That Costs Businesses Millions of Dollars”.
Pureplay Software Testing), By Industry (Mobile, Web- Internet:https://www.perforce.com/blog/pdx/cost-of-
based), By Business Type (B2B, B2C), By Application software-defects [date accessed: 10/05/2024].
& Forecast, 2024 - 2032”. Internet: https://www.
gminsights.com/industry-analysis/software-testing-
market [date accessed: 10/15/204].

5. Yondu Team “8 Future Predictions of Software

Development for 2023 and Beyond”. Internet: https://
www.yondu.com/articles/8-future-predictions-of-
software-development-for-2023-and-beyond [date
accessed: 06/15/2024].

Citation: Khudenko Daniil, “Modeling User Behavior with Markov Chains for Optimizing Regression Testing Paths in
Multi-Module Software Products”, Universal Library of Engineering Technology, 2024; 1(2): 75-79. DOI: https://doi.
org/10.70315/uloap.ulete.2024.0102012.

Copyright: © 2024 The Author(s). This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Universal Library of Engineering Technology Page | 79

