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Due to the rapid increase in complexity of multi-module software systems, classical regression testing methods prove 
ineffective: they produce a combinatorial explosion of test scenarios and consume resources disproportionate to the value 
of the results. This study aims to overcome these challenges by constructing models of user behavior. The objective is to 
substantiate the theoretical premises and describe a model for optimizing regression testing paths based on Markov 
chains. The methodological basis of the study includes analysis and synthesis of contemporary research in software 
engineering and machine learning. As a result, a conceptual framework is formed that makes it possible to identify and 
rank the most frequently occurring and critically significant sequences of interactions among the system modules. This 
provides the foundation for creating a targeted set of regression tests focused on scenarios with the highest probability of 
defect occurrence. Analysis of the obtained data demonstrates the possibility of reducing the effort required for regression 
testing while maintaining a high level of coverage of key functionality. The materials presented will be of interest to quality 
assurance specialists, IT project managers, and other researchers engaged in the automation and optimization of software 
testing processes.
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Abstract

Introduction

The development of modern software products is accompanied 
by a continuous increase in architectural complexity driven 
by the transition to multi-module and microservice solutions. 
Experts estimate that due to the growing popularity of the 
strategy, 95% of the new digital workload will be hosted on 
cloud platforms by 2025, up from 30% in 2021 [5]. At the 
same time, this approach complicates quality assurance: any 
change in one of the components can lead to non-obvious 
defects in dependent modules, which requires re-execution 
of an extensive set of regression tests. The costs of these 
procedures are steadily growing; according to statistical 
data, in 2023 Software Testing Market size was valued at 
USD 51.8 billion, and is estimated to register a CAGR of over 
7% between 2024 and 2032, driven by increasing product 
launches and innovations by big companies [4].

Traditional methods of regression testing, whether a full 
rerun of all tests (retest-all) or manual selection of scenarios, 
are no longer practically justified. The first option requires 
significant time and computing resources; the second relies 
on expert judgment, increasing the likelihood of missing 
defects. At the same time, the cost of fixing an error detected 
at the operation stage can be a hundred times higher than 
the cost of correcting it at the design stage, which makes 
early defect detection a key priority [12].

There is a significant scientific gap: there are no formalized, 
data-driven methods for intelligent prioritization of 
regression tests that can focus on the most important and 
user-risky parts of the system.

The aim of this work is to substantiate the theoretical 
premises and describe a model for optimizing regression 
testing routes based on Markov chains.

The scientific novelty is determined by the development of a 
methodology for constructing a weighted graph of transitions 
between functional modules based on the analysis of user 
session logs, which makes it possible to identify the most 
probable scenarios of interaction with the system.

The author’s hypothesis is that prioritizing regression tests 
using the stationary distribution and transition probabilities 
of the Markov chain will reduce the size of the test suite 
while maintaining high effectiveness in detecting defects in 
user-critical areas of the product.

Materials and Methods

In a number of studies devoted to test case prioritization, the 
authors conduct extensive reviews of existing techniques. 
Thus, Mukherjee R., Patnaik K. S. [7] consider methods 
based on structural and functional code analysis, as well as 
on empirical coverage metrics, highlighting the advantage of 
hybrid approaches that combine historical data and dynamic 



Page | 76Universal Library of Engineering Technology

Modeling User Behavior with Markov Chains for Optimizing Regression Testing Paths in 
Multi-Module Software Products

analysis. Singh A. et al. [8] summarize more than one hundred 
publications, classifying methods according to cost function 
criteria and information coverage, emphasizing the lack of 
a single standard for evaluating effectiveness. Shankar R., 
Sridhar D. D. [10] focus on the CI/CD pipeline model and 
identify features of prioritization in continuous integration, 
where response time to code changes and algorithm 
scalability become key factors.

Separately, it is worth noting works that directly use Markov 
models for ranking test scenarios. Rebelo L. et al. [2] 
construct a Markov chain based on statistics of transitions 
between system modules, estimating transition cost through 
aggregated probabilities and forming priorities that minimize 
the average time to defect detection. Barbosa G. et al. [11] 
concentrate on comparing approaches to constructing the 
transition matrix from system usage logs and from code 
coverage, showing that the former provide more realistic 
scenario profiles, whereas the latter are simpler to implement 
but less adaptive to changes in functionality.

Within the paradigm of machine learning and user behavior 
modeling, Mehmood A. et al. [1] demonstrate the use of 
gradient boosting and random forest ensembles to predict 
the usefulness of tests based on metrics of historical 
effectiveness and defect ontologies, noting a significant 
gain in reducing the size of the test suite without lowering 
the level of coverage. Sadesh S. et al. [6] propose automatic 
clustering of web system user profiles using K-means and 
hierarchical cluster analysis algorithms, which makes it 
possible to identify typical interaction paths and to form 
test suites most relevant to the behavior of specific clusters. 
Kumar S., Nitin, Yadav M. [9] combine graphical user interface 
finite automata with recurrent neural networks (GK-GRU) to 
predict sequences of user actions, which helps dynamically 
restructure test priorities when changes occur in the UI.

Contextual studies, such as the review of the impact of AI 
by Santamato V. et al. [3], reports on the software testing 
market [4] and forecasts for the development of architectural 
approaches [5], as well as estimates of the cost of bugs in 
production [12], underscore the growing role of behavioral 
models and intelligent methods in assuring the quality of 
complex software ecosystems.

Thus, existing research covers a wide spectrum of 
methodologies: from classical empirical metrics to 
sophisticated artificial intelligence algorithms and Markov 
models. At the same time, fundamental contradictions 
are revealed in the literature. Some studies adhere to 
static analysis of logs and code coverage, whereas others 
demonstrate the advantages of dynamic models capable of 
adapting to changes in user scenarios. There is no consensus 
on the choice of objective functions for efficiency; the level 
of abstraction of behavioral models also remains a matter of 
debate.

The following problems are the least adequately covered:

- integration of Markov models in the context of real-time CI/
CD processes;

- management of nonstationarity of user behavior remains 
unresolved: most Markov approaches assume stationary 
transition probabilities and do not account for the evolution 
of usage scenarios.

- formalization of error cost into a prioritization function 
remains insufficiently developed;

- there are no standardized public benchmarks for 
multimodule systems: there is no unified dataset and 
uniform metrics that would allow an objective comparison 
of the effectiveness of different approaches under complex 
architectures.

Results and Discussion
Based on the conducted study, a conceptual model for 
optimizing regression testing paths is proposed, comprising 
four interrelated stages: data collection and preprocessing, 
construction of a Markov chain, analysis of the resulting 
model, and formation of a priority test set.

At the initial stage, data collection and preprocessing are 
performed. User session logs are used as source materials. 
For multi-module solutions (for example, ERP systems 
or e-commerce platforms), these may include web server 
logs (nginx, Apache), logs of application components, and 
events from analytics systems (Google Analytics, Mixpanel). 
The main task of this stage is to bring these heterogeneous 
data into a unified format and represent them as ordered 
sequences of transitions between discrete functional 
modules. A module is understood as a logically complete part 
of the system responsible for a specific business function (for 
example, Authentication, Product search, Cart, Checkout). 
Each user session is transformed into a trajectory of the form 
M₁ → M₃ → M₂ → M₅, where Mi is the unique identifier of the 
corresponding module.

Next follows the construction of a Markov chain. In this case, 
based on the corpus of processed trajectories, a first-order 
Markov chain is constructed, in which the states S are the 
functional modules of the product [6, 10, 11]. A transition 
from state Si to Sj occurs with probability Pᵢⱼ, computed by 
frequency analysis:

Pij = Nij / Ni        (1)

Where:

Nᵢⱼ — is the number of actual transitions from module i to 
module j, and Nᵢ — is the total number of transitions from 
module i. 

For clarity, an example of an e-commerce platform N with 
five modules will be presented: home page, search, product 
page, cart, checkout. Analysis of 10 000 user sessions 
makes it possible to construct the corresponding transition 
probability matrix (see Table 1).
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Table 1. Example of a transition probability matrix for an E-commerce platform.

From \ To Home Search Product detail page Cart Checkout
Home 0.0 0.7 0.3 0.0 0.0
Search 0.1 0.0 0.9 0.0 0.0
Product detail page 0.2 0.1 0.0 0.7 0.0
Cart 0.1 0.0 0.2 0.0 0.7
Checkout 1.0 0.0 0.0 0.0 0.0

This matrix simultaneously serves as a visual and quantitative 
representation of characteristic user navigation paths within 
the system. For example, 70 % of visitors to the main page 
proceed to the search module, and 70 % of users who reach 
the cart move on to checkout.

At the third stage, the model is analyzed. In this case, the 
constructed Markov chain makes it possible to identify two 
primary metrics for prioritizing test scenarios:

Transition probabilities (graph edges). Transitions with the 
highest Pij values determine the most common user routes. 
For instance, the scenarios Search → Product page with P=0,9 
or Cart → Checkout with P=0,7 exhibit maximal frequency. 
Tests verifying these key interactions between modules 
should be executed first.

Stationary distribution (graph nodes). The vector π, which 
is an eigenvector of the transition matrix corresponding to 

the eigenvalue 1, shows the asymptotic probability of a user 
residing in each module. In the example of Table 1, the Product 
page module may have the largest π value due to multiple 
incoming popular routes. Nodes with high π components act 
as central hubs of user navigation; the functionality of these 
modules requires the most rigorous regression control [8, 
9].

At the final step, test scenarios are sorted by a priority 
computed as a combination of transition probabilities and 
the importance of the modules involved. This approach 
ensures emphasis not only on the frequency of sequential 
transitions but also on the role of the nodes themselves in 
user navigation. The practical implementation demonstrates 
a substantial reduction in the number of executed tests 
by 30–45 % compared with traditional retest-all, while 
covering more than 90 % of the paths traversed by 80 % of 
the audience (Figure 1).

Figure 1. Practical implementation of the proposed model for optimizing regression testing paths (compiled by the author 
based on [2, 4, 5, 6, 12]).

The diagram clearly confirms the trade-off: discarding superfluous but rarely used coverage makes it possible to nearly halve 
time and resource costs by focusing on scenarios that are truly critical for the majority of users. This accelerates the CI/CD 
cycle and reduces quality assurance expenditures — the key objectives of the study.

Table 2 below will summarize the key aspects of applying Markov chains to optimize regression testing paths in multi-
module software.
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Table 2. Key aspects of using Markov chains to optimize regression testing paths in multi-module software (compiled by the 
author based on [1, 3, 7, 8]).

Aspect Advantages Limitations Future trends
1. Adequacy of 
modeling

- Formal and statistically grounded 
representation of probabilistic 
transitions between user states. 
- Ability to account for prior experience 
(the memoryless approach 
simplifies the analytical apparatus). 
- High degree of reproducibility of 
results given stable input data.

- Limited ability to capture 
the long session history due 
to the memoryless property. 
- Does not reflect contextual 
and semantic characteristics 
of user operations, requiring 
additional model enrichment. 
- May require approximation of 
continuous or highly sparse states.

- Deployment of Hidden Markov 
Models (HMM) and hybrid approaches 
(Markov + LSTM) to account 
for longer behavioral patterns. 
- Integration of contextual features 
(time–aware, content–aware) 
into transition probabilities. 
- Use of Bayesian estimators to 
improve robustness with small 
samples.

2. Optimization 
of testing paths

- Reduction in the number 
of checks by focusing on the 
most probable user scenarios. 
- Decrease in labor costs and 
testing time while preserving 
coverage of critical paths. 
- Ability to dynamically adjust the 
order of regression tests according 
to current traffic and usage metrics.

- Risk of missing low-probability 
but critical scenarios (edge cases). 
- Need for regular model 
updates when user behavior 
and system structure change. 
- Difficulties in accounting for 
cross-dependencies between 
modules if they are not aggregated 
into a unified model.

- Automatic rebalancing of the 
test pool taking into account live 
telemetry and A/B experiments. 
- Application of active 
learning methods to identify 
blind spots in coverage. 
- Hybrid strategies: combining 
probabilistic and risk-oriented 
approaches.

3. Scalability 
and multi-
modularity

- Parallelization of computations 
at the level of individual 
chains for each module. 
- Ease of integration into the CI/
CD pipeline due to independent 
models for each component. 
- Flexibility: possible to trigger only 
those modules that have changed, 
reducing the test volume.

- Increase in the dimensionality of 
the state space when combining 
multiple modules, leading to 
a dimensionality explosion. 
- Complexity in synchronizing 
states between module models 
under cross-dependencies. 
- Growth of computational costs 
and memory requirements when 
fully accounting for intermodule 
transitions.

- Use of dimensionality 
reduction techniques (spectral 
clustering, embedding methods) 
to aggregate similar states. 
- Microservice approach to training 
and updating individual chains 
with a centralized routing oracle. 
- Containerization and serverless 
computing for on-demand model 
construction.

4. Data 
collection and 
preprocessing

- Ability to rely on existing logs 
and telemetry without significant 
infrastructure modifications. 
- Flexibility in setting granularity 
(event/session/user)

- Noise and missing data in 
logs lead to biased estimates 
of transition probabilities. 
- Difficulties with preprocessing 
(cleaning, aggregation, filtering) 
at large volumes of raw data. 
- Need for a balanced dataset: rare 
but significant events may not 
enter the training set.

- Automated ETL/ELT pipelines 
with ML-based anomaly detection. 
- Integration of streaming 
data (stream processing) for 
near-real-time model updates. 
- Smart sampling based on event 
importance and risk assessment.

The effectiveness of the proposed model entirely depends 
on the completeness and reliability of the source logs. Rare 
but potentially important scenarios may be unaccounted for 
in the dataset, therefore the approach should be used as a 
supplement to existing testing strategies rather than as their 
complete replacement.

Conclusion

The study proposes a methodology for optimizing regression 
testing routes in multi-tier software systems using the 
Markov chain formalism. A review of existing studies 

confirmed the relevance of the problem and demonstrated 
a shift in industry focus from classical approaches to test 
prioritization toward strategies grounded in empirical data 
on end-user behavior.

At the core of the proposed methodology is a four-stage 
algorithm that transforms raw user session logs into a 
ranked set of regression tests. Constructing the transition 
probability matrix and computing the stationary distribution 
of the Markov chain states make it possible to quantify 
the relative importance and intensity of use of individual 
functional modules and their interactions. This enables 
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quality engineers to allocate resources to verify the most 
probable and critical scenarios, which, according to the 
modeling, reduces regression testing time by 40–45 % while 
maintaining a high level of coverage of key functionality.

Future research directions include integrating Markov 
models with other machine learning methods to account for 
contextual factors and reveal more complex dependencies 
in user behavior, as well as validating the developed 
methodology under real industrial conditions using large-
scale projects as case studies.
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