
Page | 20www.ulopenaccess.com

ISSN: 3064-996X | Volume 2, Issue 1

Open Access | PP: 20-24

DOI: https://doi.org/10.70315/uloap.ulete.2025.0201004

Universal Library of Engineering Technology Research Article

Approaches to Creating Adaptive Design in Mobile Applications
Using React Native
Ramazanov Israpil
Technical Lead, Photon Infotech, Los Angeles, California, US.

The article explores modern approaches to creating adaptive interfaces for mobile applications using the React Native
framework. The objective of the study is to examine methods for developing adaptive interfaces that account for screen and
platform-specific characteristics. The methodology includes analyzing existing solutions such as the use of media queries,
automatic calculation of component dimensions based on screen proportions, and dynamic layout adjustments depending
on device orientation.

The results demonstrate that implementing adaptive solutions enhances user interaction, improves usability, and increases
application efficiency across various devices. The importance of selecting appropriate tools for implementing adaptive
design in cross-platform development is also emphasized.

The practical value of this study lies in providing recommendations for implementing adaptive design, which can assist
developers and designers in creating applications with a high level of user convenience. This topic is relevant to professionals,
students, and researchers working in mobile technologies.

In conclusion, it is noted that the creation of adaptive interfaces is a crucial aspect of mobile design. The methods described
in the article contribute to improving the universality and efficiency of mobile applications, enhancing the user experience,
and expanding the audience.

Keywords: Adaptive Design, Mobile Applications, React Native, Media Queries, UI/UX, Cross-Platform Development,
Responsive Design, React-Native-Responsive Library.

Abstract

Citation: Ramazanov Israpil, “Approaches to Creating Adaptive Design in Mobile Applications Using React Native”, Universal
Library of Engineering Technology, 2025; 2(1): 20-24. DOI: https://doi.org/10.70315/uloap.ulete.2025.0201004.

Introduction

In recent years, there has been a significant increase in the
number of mobile applications, driven by technological
advancements and the growing popularity of mobile devices.
A key element in development is creating interfaces that
ensure convenience and functionality on devices with varying
screen characteristics. Adaptive design is an integral part
of the process, focusing on optimizing user interfaces for a
wide range of devices. The use of the React Native framework
enables the development of cross-platform solutions,
ensuring seamless interface performance. This eliminates
the need to create separate versions of an application for
different platforms, thereby reducing development time and
associated costs.

The relevance of adaptive solutions is increasing due to the
growing variety of mobile devices. Such approaches enhance
the usability of applications, which is critical for improving

their effectiveness, particularly in commercial and service
products where user experience directly influences the
success of the final product.

The objective of this study is to examine methods for
creating adaptive interfaces that account for the specific
characteristics of screens and platforms.

Materials and Methods
The study by Azizah A. H. et al. [1] examines the development
of a health education application using the React Native
framework. Irawan A. J., Tobing F. A. T., and Surbakti E. E.
[3] describe the creation of a gamified application designed
to teach the basics of React Native. Borawake A. V. and
Shahakar M. [4] present an application for dam monitoring
that leverages crowdsourcing for data collection. Rahman
A., Rahman A. S., and Hakim M. [5] analyze the development
of an educational application for programming instruction
using React JS and React Native.

Page | 21Universal Library of Engineering Technology

Approaches to Creating Adaptive Design in Mobile Applications Using React Native

The study by Gowri S. et al. [2] analyzes technologies,
including native and cross-platform solutions, with a focus
on the specifics of mobile development. Alsaid M. A. M. M.
et al. [6] discuss the advantages of various frameworks in
terms of performance and ease of development.

The article by Segun-Falade O. D. et al. [7] highlights the
importance of interface adaptation for different platforms,
such as iOS and Android, with a focus on native components.
Miraz M. H., Ali M., and Excell P. S. [8] analyze methods
for optimizing performance when using adaptive design,
considering the constraints of single-threaded architecture.
The study by Qureshi H. H. and Wong D. H. T. [9] explores
interface accessibility, including text scaling, voice control,
and haptic feedback.

The methodology involves the analysis of existing solutions,
such as the use of media queries, automatic calculation
of component dimensions based on screen proportions,
and dynamic layout adjustments depending on device
orientation.

Results and Discussion
The mobile ecosystem encompasses a wide range of
hardware platforms, which complicates the development
of universal interfaces. Interfaces must be functional and
visually comfortable across all devices. This is achieved
through flexible layouts, dynamic element adjustments, and
the optimal utilization of available screen space. Developers
face numerous challenges, including screen diversity, pixel
density, device orientation changes, and platform-specific
differences between iOS and Android.

The task of adaptive design extends beyond resizing interface
elements, as it involves creating dynamic interactions
between components. This ensures balanced representation
under changing conditions. Maintaining precise positioning
and visual harmony remains essential, even when the display
of elements is altered [1, 3, 5].

Below, Figure 1 illustrates existing approaches to the
process of creating responsive design in React Native mobile
applications.

Fig.1. Existing approaches to creating responsive design in
React Native mobile applications [1, 3, 5].

Flexbox is a key tool for creating adaptive interfaces in React
Native. This approach allows for dynamic management of
element placement without fixed coordinates, enabling
interfaces to adjust to screen changes. Flexbox addresses
layout challenges by adapting elements based on device
orientation and model.

In React Native, Flexbox regulates element behavior through
properties such as flexDirection, which determines the layout
direction of child components (horizontal or vertical), and
alignItems and justifyContent, which control alignment and
space distribution. Although the Flexbox implementation in
React Native is somewhat limited compared to traditional
CSS, it is sufficient for most adaptability tasks [2, 4, 6].

import { View, Text } from ‘react-native’;

const Layout = () => (
 <View style={{ flex: 1, justifyContent: ‘center’, alignItems: ‘center’ }}>
 <Text>Flexible Layout</Text>
 </View>
);

Next, Table 1 will describe the advantages and disadvantages of using Flexbox for flexible layout.

Table 1. Advantages and Disadvantages of Using Flexbox for Flexible Layout (compiled by the author)

Advantages Disadvantages
Flexbox simplifies the creation of flexible and adaptive layouts,
requiring minimal effort for element positioning.

Although modern browsers support Flexbox, older versions
may lack proper support or functionality.

Flexbox allows elements to automatically distribute available
space, ensuring layout adaptability.

Despite improvements, vertical alignment of elements can
still be challenging in some cases.

Flexbox effectively redistributes space based on screen size,
making it a valuable tool for adaptive interfaces.

Flexbox is most effective for simple to moderately complex
layouts with a limited number of elements.

Page | 22Universal Library of Engineering Technology

Approaches to Creating Adaptive Design in Mobile Applications Using React Native

Flexbox enables alignment of elements along the main axis
and centers them horizontally and vertically without requiring
additional properties.

Managing layouts with many nested elements can be
challenging with Flexbox.

Flexbox allows control over element dimensions, helping to
efficiently allocate space between elements.

For highly specific layouts, Flexbox may not be the most
optimal solution.

This approach enables the creation of interfaces that automatically adapt to various screen sizes and pixel densities while
maintaining responsiveness and stable performance on devices with different characteristics. The selection of appropriate
measurement units plays a significant role in interface development, taking into account not only the physical dimensions of
screens but also their pixel density. These units allow precise control over the scaling of elements, ensuring proper display
on devices with diverse resolutions and display properties. React Native provides APIs such as Dimensions and PixelRatio.
Using standard pixels can result in distortions on devices with high pixel density, such as Retina displays. To prevent this,
density-independent units (e.g., dp, dip) and proportional sizing based on screen resolution are employed [2, 7].

import { Dimensions, PixelRatio } from ‘react-native’;

const { width, height } = Dimensions.get(‘window’);
const scale = PixelRatio.get();

const scaleSize = (size) => size * scale;

const buttonWidth = scaleSize(200); // adaptive button width

The optimization of multimedia components, including images and videos, is a critical aspect of interface development. In
React Native, the Image component is used to manage images, adapting content to different device screens. However, to
ensure proper rendering, multiple versions of the same image must be pre-prepared, each corresponding to varying pixel
density levels. This approach avoids distortions or quality loss, providing optimal content display under all conditions.

For handling images on high-resolution or uniquely dimensioned screens, libraries such as react-native-fast-imageare
recommended. These libraries automatically optimize image loading, enhancing application performance [4, 9].

import FastImage from ‘react-native-fast-image’;

<FastImage
 style={{ width: 200, height: 200 }}
 source={{
 uri: ‘https://example.com/image@2x.png’,
 priority: FastImage.priority.normal,
 }}
 resizeMode={FastImage.resizeMode.contain}
/>

When creating animations, it is essential to consider the specific characteristics of different devices and minimize CPU load,
especially on devices with limited resources. React Native provides tools for creating animations that can respond to the
interface state and user interactions [5, 8].

import { Animated } from ‘react-native’;
const fadeAnim = new Animated.Value(0);
Animated.timing(fadeAnim, {
 toValue: 1,
 duration: 500,
 useNativeDriver: true,
}).start();
return (
 <Animated.View style={{ opacity: fadeAnim }}>
 <Text>Screen Animation</Text>
 </Animated.View>
);

Page | 23Universal Library of Engineering Technology

Approaches to Creating Adaptive Design in Mobile Applications Using React Native

For flexible application behavior adjustments, third-party
libraries such as react-native-orientation-locker can be used
to lock screen orientation or fix the interface in a specific
position. Additionally, changes in screen orientation affect
the size of the virtual keyboard, which can influence user

interactions with the application. It is necessary to carefully
design the interface to handle these conditions appropriately.
The following Table 2 will describe the advantages and
disadvantages of using different approaches to create
responsive design in React Native mobile applications.

Table 2. Advantages and Disadvantages of Using Various Approaches to Creating Responsive Design in React Native Mobile
Applications

Approach to Creating
Responsive Design

Advantages Disadvantages

1. Use of Flexbox Simplicity and flexibility in aligning and
distributing elements.

Difficult for custom layouts with many nested
elements.

2. Use of Media Queries Media query support allows precise styling
adjustments based on device screen
resolution.

Requires additional logic for correctly applying
different styles.

3. Use of the react-native-
responsive library

Simple and convenient for creating responsive
interfaces.

Limited functionality compared to other
customizable solutions.

4. Use of the Dimensions
API

Ease of obtaining current device screen size
and adapting elements to fit these dimensions.

Requires manual calculations and logic for
style adjustments.

5. Use of CSS Grid Provides precise control over element
positioning, ideal for complex layouts.

Not a standard practice in React Native,
requiring additional libraries or tools.

6. Use of Adaptive Images
and Fonts

Adapts visual elements for various screen
resolutions and devices.

Requires extra effort to organize multiple
versions of images and fonts.

7. Use of the react-native-
device-info library

Enables obtaining device characteristics to
adjust styles.

Requires integration of a third-party library,
increasing dependency on external code.

8. Use of react-native-
metrics for proportional
sizing

Convenient for working with proportional
element dimensions based on screen size and
orientation.

Requires time for setup and adaptation to
specific application requirements.

Thus, creating a responsive interface for mobile applications
in React Native requires tools such as Flexbox, conditional
operators, dynamic style adjustments, and the use of prebuilt
libraries. The application of flexible measurement units,
adaptation of images and fonts, and regular testing across
various devices ensures the development of a user-friendly
and functional interface for all mobile users.

Conclusion

Creating adaptive interfaces for mobile applications on the
React Native platform is a critical task in cross-platform
development. The methods discussed, such as media queries,
the use of proportional measurement units, and specialized
libraries like react-native-responsive, address the challenges
of adapting interfaces to various device characteristics. These
approaches ensure flexibility during development, enhance
application universality, and improve user interaction with
interfaces.

Adaptive design not only enhances application usability but
also optimizes performance by automatically adjusting to
screen characteristics and pixel densities. The appropriate
selection of tools is crucial, as it reduces testing and
maintenance costs across multiple devices and platforms.

Integrating adaptive design into mobile applications is both
a technical and economically justified step for developers

aiming to deliver high-quality products and improve user
experience. The use of these methods supports the creation
of universal applications that perform reliably on a wide
range of devices.

References
Azizah A. H. et al. Research of the React Native framework 1.	
in the development of a rule-based application for
teaching a healthy lifestyle //1st International Conference
on Computer Science and Artificial Intelligence (ICCSAI),
to be held in 2021. – IEEE, 2021. – vol. 1. – pp. 391-394.

Gowri S. et al. Intelligent Analysis of frameworks for 2.	
mobile application development //5th International
Conference on Intelligent Systems and Inventive
Technologies (ICSSIT) 2023. – IEEE, 2023. – pp. 1506-
1512.

Irawan A. J., Tobing F. A. T., Surbakti E. E. Implementation 3.	
of the gamification octalysis method in the design and
creation of the react native framework educational
application //6th International Conference on the Study
of New Media (CONMEDIA) 2021. – IEEE, 2021. – pp.
118-123.

Borawake A. V., Shahakar M. Embankment Protection - 4.	
React Native cross-platform application for embankment
protection using crowdsourced data //The 2021

Page | 24Universal Library of Engineering Technology

Approaches to Creating Adaptive Design in Mobile Applications Using React Native

International Conference on Computing, Communication
and Green Engineering (CCGE). – IEEE, 2021. – pp. 1-7.

Rahman A., Rahman A. S., Hakim M. The development 5.	
strategy of Pengembangan until 2024. – Volume 7 (2).
– pp. 44-49.

Alsaid M. A. M. M. et al. Comparative analysis of 6.	
approaches to mobile application development:
Approaches to mobile application development //
Proceedings of the Pakistan Academy of Sciences:
Physical and Computational Sciences. – 2021. – Vol. 58.
– No. 1. – pp. 35-45.

Segun-Falade O. D. et al. Development of cross-platform 7.	
software applications to enhance compatibility between
devices and systems //Journal of Computer Science and
IT Research. – 2024. – vol. 5. – No. 8.

Miraz M. H., Ali M., Excell P. S. Adaptive user interfaces 8.	
and universal usability due to the plasticity of user
interface design //Computer Science Review. – 2021. –
Vol. 40. – p. 100363.

Qureshi H. H., Wong D. H. T. User-friendly mobile 9.	
app development from the perspective of visually
impaired people //Universal access for human-
computer interaction. Design Approaches and Assistive
Technologies: The 14th International UAHCI 2020
Conference, held as part of the 22nd International HCI
Conference, HCII 2020, Copenhagen, Denmark, July 19-
24, 2020, Proceedings, Part I 22. - Springer International
Publishing, 2020. – pp. 311-322.

Copyright: © 2025 The Author(s). This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

