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This paper presents a strategy for continuous testing of multi-step AI agents based on finite-state machines (FSM) and 
integrated with large language models (LLMs). The primary focus is on validating the correctness of transitions (both 
deterministic and LLM-driven) and evaluating the quality of responses, including testing formats such as voice-to-voice, 
voice-to-text, and text-to-text. It is demonstrated that the state-based approach, where each FSM node is treated as an 
independent “module” for testing, allows for error localization and effective application of quality metrics (e.g., G-Eval) 
in a continuous mode. Additionally, methods for integrating a knowledge base (RAG) into test scenarios and organizing 
integration and end-to-end (e2e) testing are discussed. The proposed practical recommendations are illustrated through 
the example of “call booking” and can be extended to more complex voice and text-based dialogue systems.
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Introduction
Modern dialogue systems that use large language models 
(LLMs) for generating multi-step responses are becoming 
increasingly complex and require rigorous quality control 
(Brown et al., 2020; Zhao et al., 2023). Voice AI agents, which 
include additional modules for automatic speech recognition 
(ASR) (Yu et al., 2016) and text-to-speech (TTS) synthesis 
(Dutoit et al., 1997), hold a particularly prominent place 
within this domain. However, as interaction scenarios grow 
more intricate—requiring the system to traverse multiple 
states (nodes) and consider various dialogue branches—the 
risks of error accumulation at individual steps increase.

To formalize the logic of such multi-step behavior, finite-
state machines (FSMs) are often employed, building on 
the classical ideas of Mealy (1955) and Moore (1956). This 
approach has already demonstrated its effectiveness in more 
modern implementations (Gao et al., 2023), where FSMs are 
integrated with Retrieval-Augmented Generation (RAG) and 
LLM-generated responses. However, a persistent challenge 
has been the continuous evaluation of two key aspects:

Correctness of transitions•	  between states (nodes/
edges), including deterministic rules (e.g., a condition 
like “age > 18”) and transitions driven by model outputs 
(so-called prompt-based transitions).

Quality of responses,•	  since even with the correct 
selection of the next node, an LLM might generate 

irrelevant text. In such cases, metrics like G-Eval (Liu, 
2023) or simpler binary checks are useful.

Continuous testing is a strategy that involves running a 
series of tests at every stage of FSM-agent development. This 
approach helps identify issues promptly without waiting for 
errors to accumulate and simplifies problem identification 
in multi-step scenarios. 

Hence, for voice AI agents, three testing formats — voice-to-
voice, voice-to-text, and text-to-text—are considered; in many 
cases, text-to-text remains the most practical for frequent 
checks, as it avoids the overhead of speech modules. 

This article explores the general principles of organizing 
continuous testing for FSM-based agents, combining LLMs 
with knowledge bases and defined transition logic. We begin 
by reviewing interaction formats (voice/text) and testing 
levels (unit, integration, e2e), then outline the key aspects 
of the state-based testing approach, focused on nodes and 
transitions. Finally, we present an example scenario that 
illustrates how to design test cases and evaluate response 
quality. Our goal is to demonstrate how continuous testing 
facilitates the maintenance and development of such agents, 
minimizing the risk of error accumulation at individual 
states and ensuring dialogue coherence in complex voice 
interaction scenarios.

Overview of testing for FSM agents
The use of FSMs in building multi-step agents (Mealy, 1955; 
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Moore, 1956) allows for explicitly regulating transitions 
between states, thereby enhancing the transparency of 
dialogue logic (Wu et al., 2024). However, achieving high 
system reliability requires consideration of specific testing 
aspects: various input and output formats (voice or text) 
and several levels of test coverage—from targeted checks of 
individual nodes to complete end-to-end scenarios (Allouch 
et al., 2021).

In practice, there are three main types of testing for voice 
agents:

Voice-to-voice:1.	  Both input and output are in audio 
format. This method is the most realistic, as it tests not 
only FSM transitions and LLM-generated responses 
but also the accuracy of speech modules. However, the 
high cost of running and maintaining such tests makes 
supporting these types of tests challenging.

Voice-to-text:2.	  The system receives audio input but 
returns text output. This method tests the ASR and FSM 
logic while excluding TTS, thus reducing complexity. 
However, it still demands careful upkeep and is somewhat 
less realistic than voice-to-voice.

Text-to-text:3.	  Both input and output are textual, 
bypassing speech recognition and synthesis. This format 
is simpler to automate and maintain, making it suitable 
for continuous integration pipelines, as it reduces 
execution time and avoids the overhead of speech 
modules (Allouch et al., 2021).

From the perspective of depth and coverage, testing can be 
categorized into three classical types (Joshi, 2024):

Unit tests1.	

These tests focus on a single node (Node) and/or specific 
transition (Edge) in isolation from the rest of the dialogue 
structure. For example, if there is a node responsible for 
checking available slots, a unit test might send the input 
“I want to know about available slots” and verify whether 
the appropriate transition occurs and a correct response is 
generated. This granular approach simplifies diagnostics and 
enables frequent test runs in a continuous testing setup.

Integration tests2.	

These tests emphasize the interaction between several 
neighboring nodes and their transition chains. A typical 
example might involve the sequence: “check schedule” → 
“offer a list of slots” → “confirm selection”. Integration testing 
ensures that the dialogue progresses from one stage to the 
next without logical gaps or incompatibilities.

End-to-End (e2e) tests3.	

These tests simulate a complete user scenario from start 
to finish (Mealy, 1955; Moore, 1956). It simulates a specific 
dialogue testing scenario from start to finish, capturing 
all transitions and intermediate results to ensure the 
conversation proceeds as expected.

To illustrate how to combine formats and levels, Table 1 
below provides a summary.

Table 1. Formats and evaluation levels

Format / Level Unit Integration End-to-End
Voice-to-voice Rarely used due to the high cost 

and complexity of generating/
recognizing audio for a single node.

Used for testing multiple voice 
modules (ASR/TTS) together but 
requires significant resources.

The most realistic but most 
expensive scenario is difficult to 
maintain.

Voice-to-text Possible for focused ASR analysis 
(one node with recognition) but has 
limited application.

A good compromise: tests 
several connected nodes and ASR 
functionality, avoiding speech 
synthesis.

Applicable for realistic dialogue 
testing, though the final response 
remains text-based rather than 
voiced.

Text-to-text The most convenient mode for local 
(state-based) node testing. Fast and 
inexpensive.

Evaluates chains of nodes without 
speech factors. 

The entire dialogue is emulated 
in text form: fast and simple but 
lacks testing of speech modules.

In addition to selecting the testing format and level, 
understanding the internal structure of the FSM is critical. In 
some systems, state transitions depend on simple conditional 
deterministic if-else rules, while others rely on model-driven 
outputs (LLM-driven transitions). The latter requires a 
specialized testing approach since model responses can vary 
depending on prompts and inherent randomness (Wu et al., 
2024).

Additionally, certain systems incorporate a knowledge base 
for retrieving factual information. Testing should include 
scenarios with different knowledge data to validate the 
correct impact on the agent’s dialog processing.

Overall, testing format (voice/text), coverage level (unit/
integration/e2e), and presence of a knowledge base create a 
multidimensional testing space. By prioritizing frequent text-
to-text unit and integration tests and using more resource-
heavy voice e2e checks only occasionally, teams can efficiently 
identify issues without overloading infrastructure.

Continuous testing approach

In the context of multi-step agents based on FSM and LLM, 
continuous testing plays a key role. Its essence lies in quickly 
running tests at every stage of development (adding new 
nodes, adjusting transition logic, or updating the model), 
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identifying regressions, and preventing the accumulation of 
minor errors in complex scenarios. 

State-Based Testing

Unlike single-prompt chatbots, which only test “prompt → 
response,” FSM agents decompose logic into multiple nodes 
(States). In state-based testing, each state is treated as a 
“module” where we can:

Define input data: for instance, a fragment of dialogue •	
history in text form  (e.g., a user utterance), key variables 
indicating previously gathered information, and 
knowledge base data (Wu et al., 2024).

Specify expected behavior: determining whether the •	
agent should remain in the current state or transition to 
a specific node. 

Fig. 1. An example of node testing

Figure Explanation:

SlotCheckNode is the main state, receiving a user request •	
to book a call for a particular time slot.

If the condition slot.isFree == true is met (blue condition, •	
representing a deterministic check), and the system 
transitions to SlotConfirmNode.

If the user indicates they do not want a booking (purple •	
condition, representing an LLM-based interpretation), 
the transition leads to FinishConversationNode.

Suppose we have a minimal agent that only does two 
main tasks: (1) verify the user’s desired slot, and (2) 
either confirm the booking or finish the conversation. The 
user’s utterance might be “Can I book a call for Friday at 
5:00 PM?” If slot.isFree == true, we expect a deterministic 
transition to SlotConfirmNode with a confirmation-like 
response. Otherwise, the node should provide an alternative 
recommendation if the user still wants to book another slot.

In a unit test, we simulate precisely this input alongside 
an internal flag (slot.isFree = true or false) to verify two 
outcomes:

Transition correctness1.	  — does the agent go to 
SlotConfirmNode, remain in SlotCheckNode, or proceed 
to FinishConversationNode?

Response alignment2.	  — does the generated text match 

the anticipated scenario (e.g., “Yes, 5 PM is free, do you 
want to confirm?” or “We have no availability at that 
time.”)?

Such testing greatly simplifies error diagnosis and avoids 
the cost of a full end-to-end check (Joshi, 2024). Since state-
based tests only simulate a single entry point (as opposed 
to the entire conversation), they are easy to integrate into a 
CI pipeline. Moreover, text-to-text mode is especially useful 
here: it not only lowers testing overhead by removing ASR/
TTS concerns but also makes it simpler for developers to 
maintain these tests. By varying the input — such as using 
different user-utterance styles or toggling slot.isFree — 
we can cover multiple dialogue branches with minimal 
overhead.

Response Quality Scoring

Even when the FSM correctly selects the next node, the 
LLM-generated response may be irrelevant, inaccurate, or 
overly generic. Traditional statistical metrics (BLEU, ROUGE, 
METEOR) are often inadequate for free-form responses. 
As a result, LLM-based methods like G-Eval (Liu, 2023) 
are becoming increasingly popular, where a “judge” model 
evaluates another model’s responses based on criteria such 
as “accuracy,” “relevance,” “completeness,” and so on.

Simple Binary Check

In straightforward cases, FSM agent developers can define 
a set of keywords or expected phrases that reliably indicate 
a correct response. For instance, if a user asks, “When is the 
call available?” the response should include either a time or 
a negative statement. Such checks are easy to automate but 
fail to capture nuances of semantic completeness and are 
unsuitable for more “creative” responses.

Using G-Eval or Similar Tools

A “judge” prompt might read, “Is the proposed answer 
factually consistent with the user’s request?” The judge 
model then outputs a numerical score or label (e.g., 1–5). 
Although this approach is flexible—allowing you to adapt 
different criteria at each node—it adds cost, given the extra 
calls to the LLM, and requires carefully crafted judge prompts 
(Liu, 2023).

This method allows dynamic adaptation of criteria to a 
specific FSM node, assessing factual correctness (checking 
for hallucinations), appropriateness of tone, or level of 
detail.

Typically, scoring is invoked automatically during state-
based testing: after generating a response within the node, 
the system submits it for evaluation and compares the score 
to a threshold. Failing to meet that threshold marks the test 
as failed, prompting further investigation.

Integration and End-to-End (e2e) Tests

Even with regular use of state-based testing, there is a 
possibility that a sequence of nodes may not interact as 
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expected. Therefore, integration and end-to-end (e2e) tests 
are conducted (Mealy, 1955; Moore, 1956) to emulate a 
sequence of transitions across multiple nodes.

Integration tests typically encompass a small set of connected 
nodes, for example: “query available slots → return a 
schedule → select a slot → confirm.” The goal is to ensure 
that each node in this mini-chain correctly hands off control 
to the next, without logical gaps or missing data. At this level, 
a text-to-text format is frequently sufficient, focusing on FSM 
logic and any knowledge base lookups rather than speech 
processing.

End-to-end (e2e) tests simulate the entire user conversation, 
from the first utterance to the final state. In a voice AI 
scenario, this can involve voice-to-voice interaction, wherein 
audio input goes through ASR, responses go through TTS, 
and all relevant FSM transitions are traversed. Such e2e tests 
are more “realistic” but also significantly more resource-
intensive.

Through this two-tiered strategy — selective state-based 
checks plus comprehensive multi-node (integration/e2e) 
scenarios — the system achieves rapid feedback on individual 
nodes while still verifying multi-step coherence. The next 
section demonstrates these principles in a concrete scenario, 
focusing on a straightforward “call booking” example.

Example testing scenario and practical 
nuances
Let us consider a hypothetical scenario in which a user aims 
to find an available slot for an appointment (a “booking”) 
and, if desired, confirm that booking. The same agent could 
also handle general inquiries, redirecting such questions to 
a frequently asked questions (FAQ) node. Below, we first 
describe the structure of our test cases — inputs, nodes, and 
expected outcomes — then outline approaches to testing in 
various formats, followed by considerations for data usage 
and concluding recommendations.

We begin with the structure of the test cases (fig. 2). 

Fig. 2. The structure of the test cases

As shown above:

GreetingNode•	  (in green) is the initial node where the 
agent greets the user.

SlotCheckNode•	  handles checking if a desired slot is 
available for the booking. It is reached when the user 
wants to make a booking (purple arrow: an LLM-based 
interpretation).

FAQNode•	  handles general questions. It is triggered via a 
purple arrow from either GreetingNode or SlotCheckNode 
if the user’s query is not about scheduling.

SlotConfirmFinalNode•	  (in pink) is where the agent 
finalizes a booking if slot.isFree == true (blue arrow: a 
deterministic check).

FinishConversationNode•	  (in pink) is reached if the 
user decides not to book.

Following Fig. 2, the primary nodes of interest for the 
booking flow are:

GreetingNode:•	  The conversation starts here.

SlotCheckNode:•	  The user specifies a desired time for a 
call; the system checks if it is free.

SlotConfirmFinalNode:•	  If the slot is indeed free, the 
agent confirms the booking and finalizes.

FinishConversationNode:•	  Ends the dialogue if the user 
doesn’t want a call or has completed their request.

(Note: The FAQNode is present for users who “have questions,” 
but in this example, we focus on booking transitions.)

Transitions occur as follows: from GreetingNode to 
SlotCheckNode if the user’s intent is to make a booking 
(purple arrow, LLM-based). In SlotCheckNode, a deterministic 
condition checks whether slot.isFree == true (blue arrow). If 
so, the system moves to SlotConfirmFinalNode, prompting 
a confirmation message. Otherwise, it might propose 
alternatives or move to FinishConversationNode if the 
user decides against booking. Typical inputs for test cases 
include:

“I’d like to book a call on Friday at 5 PM.”1.	  (The slot is free; 
user is guided to confirm.)

“Do you have anything on Saturday?”2.	  (No slot available; 
alternatives or finishing the call might be offered.)

“I changed my mind. I don’t need the booking.”3.	  (User 
abandons the request, ending the session.)

Expected outcomes involve verifying (1) transition logic — 
does the agent arrive at the correct node and (2) response 
content — does it confirm the slot, decline, or redirect to a 
different node (like FAQNode or FinishConversationNode)?

To illustrate possible test cases, Table 2 matches each 
example input with the system’s desired response and the 
node to which it should transition next.
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Table 2. Expected outcomes for input data

Input statement Result/response Transition (next node)
“I want to book a call for Friday at 
5:00 PM.”

“Yes, Friday at 5:00 PM is available. Would you 
like to confirm?”

Slot Confirm Final Node (blue 
arrow)

“Is there any time on Saturday?” “Saturday isn’t available; we can offer Friday at 
4:00 PM instead.”

SlotCheckNode (stay in node)

“I changed my mind, I don’t need the 
booking.”

“Understood, canceling your request. Have a 
good day!”

FinishConversationNode

To show how transitions and text responses might be 
validated:

User1.	 : “Any availability on Saturday?”

System (slot is not free): “Saturday is unavailable; how 
about Friday at 4 PM?” (Remain in SlotCheckNode, user 
can confirm or decline)

User2.	 : “Yes, let’s do Friday at 4:00 then.”

(The system sees a positive booking request. If slot.isFree 
== true, the transition goes to SlotConfirmFinalNode with 
a success response, finalizing the booking.)

To evaluate the agent’s responses using a Large Language 
Model (LLM), we can use a scoring system where the LLM 
evaluates each response based on predefined criteria like 
accuracy, relevance, and politeness. For example, consider the 
scenario where the user asks, “Any availability on Saturday?”. 
The expected response is, “Saturday is unavailable; how 
about Friday at 4 PM?”. However, the agent’s actual response 
is, “Saturday is fully booked. Would Friday at 4 PM work 
for you?”. To assess this response, the LLM is given tailored 
prompts for each criterion. For accuracy, the prompt could 
be: “On a scale of 0 to 5, how accurately does this response 
inform the user about Saturday’s availability?” The LLM might 
assign a score of 5/5 if the response correctly communicates 
that Saturday is unavailable. For relevance, a prompt such as 
“On a scale of 0 to 5, how relevant is the suggested alternative 
time to the user’s query?” might result in another 5/5, as 
the response appropriately suggests Friday at 4 PM. For 
politeness, the prompt “On a scale of 0 to 5, how polite and 
professional is the tone of this response?” may yield a 4/5 
due to its courteous phrasing.

The total score is then calculated by averaging the individual 
scores or applying a weighted formula if certain criteria are 
prioritized. In this case, the response scores (5+5+4)/3 = 
4.67, indicating strong overall performance. A threshold 
score is pre-defined during test setup (e.g., 4.0 out of 5). If 
the total score is below this threshold, the test fails, signaling 
that the response requires revision. For instance, if the agent’s 
response instead omitted the suggestion of an alternative 
time, the relevance score might drop to 2/5, and the overall 
score could fall to 3.67, triggering a test failure.

By employing these methods — whether focusing on text-
based checks, partial flows, or full voice-based interactions 

— teams can detect logic flaws early and ensure overall 
coherence in more extensive scenarios.

Conclusion
This article examined approaches to testing voice AI agents 
built on FSM and modern LLMs. Continuous testing plays a 
crucial role in this context, as even minor changes in node 
structures or transition logic can lead to unexpected failures 
at later stages of the dialogue. We demonstrated that the 
most effective solution combines state-based tests focused 
on specific nodes with more extensive integration and end-
to-end (e2e) scenarios.

Particular emphasis was placed on various interaction 
formats: voice-to-voice, voice-to-text, and text-to-text. While 
the full voice format (voice-to-voice) provides the most 
realistic scenario, text-to-text testing proves optimal for 
regular CI pipeline runs due to reduced costs and simplified 
infrastructure.

For response quality evaluation, we discussed basic 
(template-based) checks and LLM-as-a-judge approaches. 
These tools enable dynamic assessment of the relevance and 
accuracy of generative responses but increase testing costs 
and require careful prompt design. Using the slot booking 
example, we demonstrated how transition checks, test 
inputs for different scenarios (available/unavailable slots), 
and knowledge base integration mechanisms work together.

Thus, the proposed approach provides a practical toolkit 
for continuous testing of multi-step voice and text dialogue 
systems. Future developments include the automatic 
generation of test scenarios based on real logs, expanding the 
range of quality metrics (e.g., toxicity, unwarranted model 
“hallucinations”), and systematically addressing security 
and privacy concerns during testing.
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