
Page | 25www.ulopenaccess.com

ISSN: 3064-996X | Volume 2, Issue 1

Open Access | PP: 25-30

DOI: https://doi.org/10.70315/uloap.ulete.2025.0201005

Universal Library of Engineering Technology Research Article

Continuous Testing for State-Based Multistep Voice AI Agents
Vladyslav Budichenko
Chief Technology Officer at Vocaly AI, Miami, FL, USA.

This paper presents a strategy for continuous testing of multi-step AI agents based on finite-state machines (FSM) and
integrated with large language models (LLMs). The primary focus is on validating the correctness of transitions (both
deterministic and LLM-driven) and evaluating the quality of responses, including testing formats such as voice-to-voice,
voice-to-text, and text-to-text. It is demonstrated that the state-based approach, where each FSM node is treated as an
independent “module” for testing, allows for error localization and effective application of quality metrics (e.g., G-Eval)
in a continuous mode. Additionally, methods for integrating a knowledge base (RAG) into test scenarios and organizing
integration and end-to-end (e2e) testing are discussed. The proposed practical recommendations are illustrated through
the example of “call booking” and can be extended to more complex voice and text-based dialogue systems.

Keywords: Continuous Testing, Multi-Step LIM Agents, Finite-State Machines, State-Based Testing, Voice-To-Voice / Voice-
To-Text / Text-To-Text, G-Eval, Knowledge Base / RAG, Unit Testing, Integration Testing, End-To-End (e2e) Testing.

Abstract

Citation: Vladyslav Budichenko, “Continuous Testing for State-Based Multistep Voice AI Agents”, Universal Library of
Engineering Technology, 2025; 2(1): 25-30. DOI: https://doi.org/10.70315/uloap.ulete.2025.0201005.

Introduction
Modern dialogue systems that use large language models
(LLMs) for generating multi-step responses are becoming
increasingly complex and require rigorous quality control
(Brown et al., 2020; Zhao et al., 2023). Voice AI agents, which
include additional modules for automatic speech recognition
(ASR) (Yu et al., 2016) and text-to-speech (TTS) synthesis
(Dutoit et al., 1997), hold a particularly prominent place
within this domain. However, as interaction scenarios grow
more intricate—requiring the system to traverse multiple
states (nodes) and consider various dialogue branches—the
risks of error accumulation at individual steps increase.

To formalize the logic of such multi-step behavior, finite-
state machines (FSMs) are often employed, building on
the classical ideas of Mealy (1955) and Moore (1956). This
approach has already demonstrated its effectiveness in more
modern implementations (Gao et al., 2023), where FSMs are
integrated with Retrieval-Augmented Generation (RAG) and
LLM-generated responses. However, a persistent challenge
has been the continuous evaluation of two key aspects:

Correctness of transitions•	 between states (nodes/
edges), including deterministic rules (e.g., a condition
like “age > 18”) and transitions driven by model outputs
(so-called prompt-based transitions).

Quality of responses,•	 since even with the correct
selection of the next node, an LLM might generate

irrelevant text. In such cases, metrics like G-Eval (Liu,
2023) or simpler binary checks are useful.

Continuous testing is a strategy that involves running a
series of tests at every stage of FSM-agent development. This
approach helps identify issues promptly without waiting for
errors to accumulate and simplifies problem identification
in multi-step scenarios.

Hence, for voice AI agents, three testing formats — voice-to-
voice, voice-to-text, and text-to-text—are considered; in many
cases, text-to-text remains the most practical for frequent
checks, as it avoids the overhead of speech modules.

This article explores the general principles of organizing
continuous testing for FSM-based agents, combining LLMs
with knowledge bases and defined transition logic. We begin
by reviewing interaction formats (voice/text) and testing
levels (unit, integration, e2e), then outline the key aspects
of the state-based testing approach, focused on nodes and
transitions. Finally, we present an example scenario that
illustrates how to design test cases and evaluate response
quality. Our goal is to demonstrate how continuous testing
facilitates the maintenance and development of such agents,
minimizing the risk of error accumulation at individual
states and ensuring dialogue coherence in complex voice
interaction scenarios.

Overview of testing for FSM agents
The use of FSMs in building multi-step agents (Mealy, 1955;

Page | 26Universal Library of Engineering Technology

Continuous Testing for State-Based Multistep Voice AI Agents

Moore, 1956) allows for explicitly regulating transitions
between states, thereby enhancing the transparency of
dialogue logic (Wu et al., 2024). However, achieving high
system reliability requires consideration of specific testing
aspects: various input and output formats (voice or text)
and several levels of test coverage—from targeted checks of
individual nodes to complete end-to-end scenarios (Allouch
et al., 2021).

In practice, there are three main types of testing for voice
agents:

Voice-to-voice:1.	 Both input and output are in audio
format. This method is the most realistic, as it tests not
only FSM transitions and LLM-generated responses
but also the accuracy of speech modules. However, the
high cost of running and maintaining such tests makes
supporting these types of tests challenging.

Voice-to-text:2.	 The system receives audio input but
returns text output. This method tests the ASR and FSM
logic while excluding TTS, thus reducing complexity.
However, it still demands careful upkeep and is somewhat
less realistic than voice-to-voice.

Text-to-text:3.	 Both input and output are textual,
bypassing speech recognition and synthesis. This format
is simpler to automate and maintain, making it suitable
for continuous integration pipelines, as it reduces
execution time and avoids the overhead of speech
modules (Allouch et al., 2021).

From the perspective of depth and coverage, testing can be
categorized into three classical types (Joshi, 2024):

Unit tests1.	

These tests focus on a single node (Node) and/or specific
transition (Edge) in isolation from the rest of the dialogue
structure. For example, if there is a node responsible for
checking available slots, a unit test might send the input
“I want to know about available slots” and verify whether
the appropriate transition occurs and a correct response is
generated. This granular approach simplifies diagnostics and
enables frequent test runs in a continuous testing setup.

Integration tests2.	

These tests emphasize the interaction between several
neighboring nodes and their transition chains. A typical
example might involve the sequence: “check schedule” →
“offer a list of slots” → “confirm selection”. Integration testing
ensures that the dialogue progresses from one stage to the
next without logical gaps or incompatibilities.

End-to-End (e2e) tests3.	

These tests simulate a complete user scenario from start
to finish (Mealy, 1955; Moore, 1956). It simulates a specific
dialogue testing scenario from start to finish, capturing
all transitions and intermediate results to ensure the
conversation proceeds as expected.

To illustrate how to combine formats and levels, Table 1
below provides a summary.

Table 1. Formats and evaluation levels

Format / Level Unit Integration End-to-End
Voice-to-voice Rarely used due to the high cost

and complexity of generating/
recognizing audio for a single node.

Used for testing multiple voice
modules (ASR/TTS) together but
requires significant resources.

The most realistic but most
expensive scenario is difficult to
maintain.

Voice-to-text Possible for focused ASR analysis
(one node with recognition) but has
limited application.

A good compromise: tests
several connected nodes and ASR
functionality, avoiding speech
synthesis.

Applicable for realistic dialogue
testing, though the final response
remains text-based rather than
voiced.

Text-to-text The most convenient mode for local
(state-based) node testing. Fast and
inexpensive.

Evaluates chains of nodes without
speech factors.

The entire dialogue is emulated
in text form: fast and simple but
lacks testing of speech modules.

In addition to selecting the testing format and level,
understanding the internal structure of the FSM is critical. In
some systems, state transitions depend on simple conditional
deterministic if-else rules, while others rely on model-driven
outputs (LLM-driven transitions). The latter requires a
specialized testing approach since model responses can vary
depending on prompts and inherent randomness (Wu et al.,
2024).

Additionally, certain systems incorporate a knowledge base
for retrieving factual information. Testing should include
scenarios with different knowledge data to validate the
correct impact on the agent’s dialog processing.

Overall, testing format (voice/text), coverage level (unit/
integration/e2e), and presence of a knowledge base create a
multidimensional testing space. By prioritizing frequent text-
to-text unit and integration tests and using more resource-
heavy voice e2e checks only occasionally, teams can efficiently
identify issues without overloading infrastructure.

Continuous testing approach

In the context of multi-step agents based on FSM and LLM,
continuous testing plays a key role. Its essence lies in quickly
running tests at every stage of development (adding new
nodes, adjusting transition logic, or updating the model),

Page | 27Universal Library of Engineering Technology

Continuous Testing for State-Based Multistep Voice AI Agents

identifying regressions, and preventing the accumulation of
minor errors in complex scenarios.

State-Based Testing

Unlike single-prompt chatbots, which only test “prompt →
response,” FSM agents decompose logic into multiple nodes
(States). In state-based testing, each state is treated as a
“module” where we can:

Define input data: for instance, a fragment of dialogue •	
history in text form (e.g., a user utterance), key variables
indicating previously gathered information, and
knowledge base data (Wu et al., 2024).

Specify expected behavior: determining whether the •	
agent should remain in the current state or transition to
a specific node.

Fig. 1. An example of node testing

Figure Explanation:

SlotCheckNode is the main state, receiving a user request •	
to book a call for a particular time slot.

If the condition slot.isFree == true is met (blue condition, •	
representing a deterministic check), and the system
transitions to SlotConfirmNode.

If the user indicates they do not want a booking (purple •	
condition, representing an LLM-based interpretation),
the transition leads to FinishConversationNode.

Suppose we have a minimal agent that only does two
main tasks: (1) verify the user’s desired slot, and (2)
either confirm the booking or finish the conversation. The
user’s utterance might be “Can I book a call for Friday at
5:00 PM?” If slot.isFree == true, we expect a deterministic
transition to SlotConfirmNode with a confirmation-like
response. Otherwise, the node should provide an alternative
recommendation if the user still wants to book another slot.

In a unit test, we simulate precisely this input alongside
an internal flag (slot.isFree = true or false) to verify two
outcomes:

Transition correctness1.	 — does the agent go to
SlotConfirmNode, remain in SlotCheckNode, or proceed
to FinishConversationNode?

Response alignment2.	 — does the generated text match

the anticipated scenario (e.g., “Yes, 5 PM is free, do you
want to confirm?” or “We have no availability at that
time.”)?

Such testing greatly simplifies error diagnosis and avoids
the cost of a full end-to-end check (Joshi, 2024). Since state-
based tests only simulate a single entry point (as opposed
to the entire conversation), they are easy to integrate into a
CI pipeline. Moreover, text-to-text mode is especially useful
here: it not only lowers testing overhead by removing ASR/
TTS concerns but also makes it simpler for developers to
maintain these tests. By varying the input — such as using
different user-utterance styles or toggling slot.isFree —
we can cover multiple dialogue branches with minimal
overhead.

Response Quality Scoring

Even when the FSM correctly selects the next node, the
LLM-generated response may be irrelevant, inaccurate, or
overly generic. Traditional statistical metrics (BLEU, ROUGE,
METEOR) are often inadequate for free-form responses.
As a result, LLM-based methods like G-Eval (Liu, 2023)
are becoming increasingly popular, where a “judge” model
evaluates another model’s responses based on criteria such
as “accuracy,” “relevance,” “completeness,” and so on.

Simple Binary Check

In straightforward cases, FSM agent developers can define
a set of keywords or expected phrases that reliably indicate
a correct response. For instance, if a user asks, “When is the
call available?” the response should include either a time or
a negative statement. Such checks are easy to automate but
fail to capture nuances of semantic completeness and are
unsuitable for more “creative” responses.

Using G-Eval or Similar Tools

A “judge” prompt might read, “Is the proposed answer
factually consistent with the user’s request?” The judge
model then outputs a numerical score or label (e.g., 1–5).
Although this approach is flexible—allowing you to adapt
different criteria at each node—it adds cost, given the extra
calls to the LLM, and requires carefully crafted judge prompts
(Liu, 2023).

This method allows dynamic adaptation of criteria to a
specific FSM node, assessing factual correctness (checking
for hallucinations), appropriateness of tone, or level of
detail.

Typically, scoring is invoked automatically during state-
based testing: after generating a response within the node,
the system submits it for evaluation and compares the score
to a threshold. Failing to meet that threshold marks the test
as failed, prompting further investigation.

Integration and End-to-End (e2e) Tests

Even with regular use of state-based testing, there is a
possibility that a sequence of nodes may not interact as

Page | 28Universal Library of Engineering Technology

Continuous Testing for State-Based Multistep Voice AI Agents

expected. Therefore, integration and end-to-end (e2e) tests
are conducted (Mealy, 1955; Moore, 1956) to emulate a
sequence of transitions across multiple nodes.

Integration tests typically encompass a small set of connected
nodes, for example: “query available slots → return a
schedule → select a slot → confirm.” The goal is to ensure
that each node in this mini-chain correctly hands off control
to the next, without logical gaps or missing data. At this level,
a text-to-text format is frequently sufficient, focusing on FSM
logic and any knowledge base lookups rather than speech
processing.

End-to-end (e2e) tests simulate the entire user conversation,
from the first utterance to the final state. In a voice AI
scenario, this can involve voice-to-voice interaction, wherein
audio input goes through ASR, responses go through TTS,
and all relevant FSM transitions are traversed. Such e2e tests
are more “realistic” but also significantly more resource-
intensive.

Through this two-tiered strategy — selective state-based
checks plus comprehensive multi-node (integration/e2e)
scenarios — the system achieves rapid feedback on individual
nodes while still verifying multi-step coherence. The next
section demonstrates these principles in a concrete scenario,
focusing on a straightforward “call booking” example.

Example testing scenario and practical
nuances
Let us consider a hypothetical scenario in which a user aims
to find an available slot for an appointment (a “booking”)
and, if desired, confirm that booking. The same agent could
also handle general inquiries, redirecting such questions to
a frequently asked questions (FAQ) node. Below, we first
describe the structure of our test cases — inputs, nodes, and
expected outcomes — then outline approaches to testing in
various formats, followed by considerations for data usage
and concluding recommendations.

We begin with the structure of the test cases (fig. 2).

Fig. 2. The structure of the test cases

As shown above:

GreetingNode•	 (in green) is the initial node where the
agent greets the user.

SlotCheckNode•	 handles checking if a desired slot is
available for the booking. It is reached when the user
wants to make a booking (purple arrow: an LLM-based
interpretation).

FAQNode•	 handles general questions. It is triggered via a
purple arrow from either GreetingNode or SlotCheckNode
if the user’s query is not about scheduling.

SlotConfirmFinalNode•	 (in pink) is where the agent
finalizes a booking if slot.isFree == true (blue arrow: a
deterministic check).

FinishConversationNode•	 (in pink) is reached if the
user decides not to book.

Following Fig. 2, the primary nodes of interest for the
booking flow are:

GreetingNode:•	 The conversation starts here.

SlotCheckNode:•	 The user specifies a desired time for a
call; the system checks if it is free.

SlotConfirmFinalNode:•	 If the slot is indeed free, the
agent confirms the booking and finalizes.

FinishConversationNode:•	 Ends the dialogue if the user
doesn’t want a call or has completed their request.

(Note: The FAQNode is present for users who “have questions,”
but in this example, we focus on booking transitions.)

Transitions occur as follows: from GreetingNode to
SlotCheckNode if the user’s intent is to make a booking
(purple arrow, LLM-based). In SlotCheckNode, a deterministic
condition checks whether slot.isFree == true (blue arrow). If
so, the system moves to SlotConfirmFinalNode, prompting
a confirmation message. Otherwise, it might propose
alternatives or move to FinishConversationNode if the
user decides against booking. Typical inputs for test cases
include:

“I’d like to book a call on Friday at 5 PM.”1.	 (The slot is free;
user is guided to confirm.)

“Do you have anything on Saturday?”2.	 (No slot available;
alternatives or finishing the call might be offered.)

“I changed my mind. I don’t need the booking.”3.	 (User
abandons the request, ending the session.)

Expected outcomes involve verifying (1) transition logic —
does the agent arrive at the correct node and (2) response
content — does it confirm the slot, decline, or redirect to a
different node (like FAQNode or FinishConversationNode)?

To illustrate possible test cases, Table 2 matches each
example input with the system’s desired response and the
node to which it should transition next.

Page | 29Universal Library of Engineering Technology

Continuous Testing for State-Based Multistep Voice AI Agents

Table 2. Expected outcomes for input data

Input statement Result/response Transition (next node)
“I want to book a call for Friday at
5:00 PM.”

“Yes, Friday at 5:00 PM is available. Would you
like to confirm?”

Slot Confirm Final Node (blue
arrow)

“Is there any time on Saturday?” “Saturday isn’t available; we can offer Friday at
4:00 PM instead.”

SlotCheckNode (stay in node)

“I changed my mind, I don’t need the
booking.”

“Understood, canceling your request. Have a
good day!”

FinishConversationNode

To show how transitions and text responses might be
validated:

User1.	 : “Any availability on Saturday?”

System (slot is not free): “Saturday is unavailable; how
about Friday at 4 PM?” (Remain in SlotCheckNode, user
can confirm or decline)

User2.	 : “Yes, let’s do Friday at 4:00 then.”

(The system sees a positive booking request. If slot.isFree
== true, the transition goes to SlotConfirmFinalNode with
a success response, finalizing the booking.)

To evaluate the agent’s responses using a Large Language
Model (LLM), we can use a scoring system where the LLM
evaluates each response based on predefined criteria like
accuracy, relevance, and politeness. For example, consider the
scenario where the user asks, “Any availability on Saturday?”.
The expected response is, “Saturday is unavailable; how
about Friday at 4 PM?”. However, the agent’s actual response
is, “Saturday is fully booked. Would Friday at 4 PM work
for you?”. To assess this response, the LLM is given tailored
prompts for each criterion. For accuracy, the prompt could
be: “On a scale of 0 to 5, how accurately does this response
inform the user about Saturday’s availability?” The LLM might
assign a score of 5/5 if the response correctly communicates
that Saturday is unavailable. For relevance, a prompt such as
“On a scale of 0 to 5, how relevant is the suggested alternative
time to the user’s query?” might result in another 5/5, as
the response appropriately suggests Friday at 4 PM. For
politeness, the prompt “On a scale of 0 to 5, how polite and
professional is the tone of this response?” may yield a 4/5
due to its courteous phrasing.

The total score is then calculated by averaging the individual
scores or applying a weighted formula if certain criteria are
prioritized. In this case, the response scores (5+5+4)/3 =
4.67, indicating strong overall performance. A threshold
score is pre-defined during test setup (e.g., 4.0 out of 5). If
the total score is below this threshold, the test fails, signaling
that the response requires revision. For instance, if the agent’s
response instead omitted the suggestion of an alternative
time, the relevance score might drop to 2/5, and the overall
score could fall to 3.67, triggering a test failure.

By employing these methods — whether focusing on text-
based checks, partial flows, or full voice-based interactions

— teams can detect logic flaws early and ensure overall
coherence in more extensive scenarios.

Conclusion
This article examined approaches to testing voice AI agents
built on FSM and modern LLMs. Continuous testing plays a
crucial role in this context, as even minor changes in node
structures or transition logic can lead to unexpected failures
at later stages of the dialogue. We demonstrated that the
most effective solution combines state-based tests focused
on specific nodes with more extensive integration and end-
to-end (e2e) scenarios.

Particular emphasis was placed on various interaction
formats: voice-to-voice, voice-to-text, and text-to-text. While
the full voice format (voice-to-voice) provides the most
realistic scenario, text-to-text testing proves optimal for
regular CI pipeline runs due to reduced costs and simplified
infrastructure.

For response quality evaluation, we discussed basic
(template-based) checks and LLM-as-a-judge approaches.
These tools enable dynamic assessment of the relevance and
accuracy of generative responses but increase testing costs
and require careful prompt design. Using the slot booking
example, we demonstrated how transition checks, test
inputs for different scenarios (available/unavailable slots),
and knowledge base integration mechanisms work together.

Thus, the proposed approach provides a practical toolkit
for continuous testing of multi-step voice and text dialogue
systems. Future developments include the automatic
generation of test scenarios based on real logs, expanding the
range of quality metrics (e.g., toxicity, unwarranted model
“hallucinations”), and systematically addressing security
and privacy concerns during testing.

References
Brown, T. B. (2020). Language models are few-shot 1.	
learners. arXiv preprint arXiv:2005.14165.

Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., ... 2.	
& Wen, J. R. (2023). A survey of large language models.
arXiv preprint arXiv:2303.18223.

Yu, D., & Deng, L. (2016). Automatic speech recognition 3.	
(Vol. 1). Berlin: Springer.

Dutoit, T. (1997). An introduction to text-to-speech 4.	
synthesis (Vol. 3). Springer Science & Business Media.

Page | 30Universal Library of Engineering Technology

Continuous Testing for State-Based Multistep Voice AI Agents

Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., ... & 5.	
Wang, H. (2023). Retrieval-augmented generation
for large language models: A survey. arXiv preprint
arXiv:2312.10997.

Liu Y. et al. G-eval: Nlg evaluation using gpt-4 with better 6.	
human alignment //arXiv preprint arXiv:2303.16634. –
2023.

Wu, Y., Yue, T., Zhang, S., Wang, C., & Wu, Q. (2024). 7.	
StateFlow: Enhancing LLM Task-Solving through State-
Driven Workflows. arXiv preprint arXiv:2403.11322.

Allouch, M., Azaria, A., & Azoulay, R. (2021). 8.	
Conversational agents: Goals, technologies, vision and
challenges. Sensors, 21(24), 8448.

Joshi V., Band I. Disrupting Test Development with AI 9.	
Assistants //arXiv preprint arXiv:2411.02328. – 2024.

Wu, B., Chen, G., Chen, K., Shang, X., Han, J., He, Y., ... & Yu, 10.	
N. (2024). AutoPT: How Far Are We from the End2End
Automated Web Penetration Testing?. arXiv preprint
arXiv:2411.01236.

Mealy, G. H. (1955). A method for synthesizing sequential 11.	
circuits. The Bell System Technical Journal, 34(5), 1045–
1079.

Moore, E. F. (1956). Gedanken-experiments on sequential 12.	
machines. Automata studies, 34, 129–153.

Copyright: © 2025 The Author(s). This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

