
Page | 1www.ulopenaccess.com

ISSN: 3064-996X | Volume 2, Issue 2

Open Access | PP: 01-05

DOI: https://doi.org/10.70315/uloap.ulete.2025.0202001

Universal Library of Engineering Technology Research Article

Security Challenges in Continuous Software Delivery
Romm Nikita
Senior DevOps Engineer, Palo Alto Networks, Tel Aviv, Israel.

This article examines the challenges of structuring security within continuous software delivery processes, highlighting 
the critical role of comprehensive security approaches. The relevance of this topic is driven by the widespread adoption of 
DevOps cultures and rapid expansion of CI/CD practices. The research contributes novelty through its systematic analysis of 
risks, focusing specifically on pipeline-targeted attacks and the theft of sensitive credentials. The paper details vulnerability 
detection mechanisms at each stage of the development lifecycle, explores tools for rapid threat response, and presents 
strategies for integrating security checks without compromising release velocity. Particular attention is given to the 
implementation of DevSecOps approaches and cultural factors influencing teams’ perceptions of security procedures. The 
objective is to formulate comprehensive guidelines that maintain pipeline efficiency under stringent security controls. To 
achieve this, static code analysis, dynamic testing, and dependency monitoring techniques were employed. Studies were 
reviewed to reflect best practices in organizing secure pipelines, supplemented by theoretical sources and contemporary 
examples from the DevOps community. The conclusion outlines the practical value of the developed strategies. This article 
will benefit information security professionals, developers, and managers engaged in continuous methodologies.

Keywords: Continuous Delivery, DevSecOps, CI/CD, Software Security, Pipeline Protection, Automated Testing, 
Vulnerability Monitoring, Secret Management, DevOps Culture, Container Technologies.

Abstract

Citation: Romm Nikita, “Security Challenges in Continuous Software Delivery”, Universal Library of Engineering 
Technology, 2025; 2(2): 01-05. DOI: https://doi.org/10.70315/uloap.ulete.2025.0202001.

Introduction

Continuous Delivery (CD) and DevOps methodologies have 
become industry standards in software development due to 
their capacity for rapid and frequent software releases. Yet, as 
release cycles accelerate, companies face increasing pressure 
to embed robust security measures into highly automated 
pipelines without slowing them down. In environments 
where code progresses from a developer’s commit to 
production deployment within mere hours or even minutes, 
traditional security approaches—such as comprehensive 
audits and extended testing phases—fail to keep pace.

This shift has given rise to the DevSecOps paradigm, 
integrating security practices throughout all CI/CD stages. 
Nevertheless, organizations face numerous hurdles in 
implementing DevSecOps: vulnerabilities within pipeline 
components, immature toolsets, resistance to cultural shifts 
among teams, and more. This article addresses the primary 
security challenges in continuous software delivery and 
evaluates practical approaches to overcoming them.

Materials and Methods

The research relied upon studies by R. Rajapakse, M. Zahedi, 
M. Babar, and H. Shen [7], which detailed organizational 

challenges and strategies involved in transitioning to 
DevSecOps. C. Luft [5] introduced concepts to counter pipeline 
attacks, underscoring the necessity of regularly auditing build 
tools. M. Heusser [4] examined practical considerations for 
securing secrets within CI/CD environments and managing 
dependency security. The study by S. Sengupta [8] provided 
insights on integrating vulnerability testing into automated 
delivery processes. The R2Devops team [6] analyzed the 
repercussions of attacks on popular tools, investigated the 
SolarWinds incident, and proposed measures to strengthen 
software supply chains. The Cheat Sheets Series Team [2] 
outlined preventive actions in software development and 
operations, emphasizing encryption and rights minimization. 
R.R. Annadi [1] addressed cultural limitations encountered 
during the introduction of new security practices. 
Additionally, N. Forsgren’s research [3] highlighted the 
significance of DevOps methodologies influencing release 
productivity.

A comparative analysis was applied to evaluate different 
integration methods for security tools. Studies were selected 
for their relevance, encompassing both scientific literature 
and practical reports on DevSecOps. Further, identified 
recommendations were synthesized with specific attention to 
the nuances of continuous delivery environments. Empirical 



Page | 2Universal Library of Engineering Technology

Security Challenges in Continuous Software Delivery

examples from the reviewed publications formed the basis 
for systematic data structuring. Final recommendations 
were evaluated regarding their impact on pipeline resilience, 
release dynamics, and reduction of pipeline penetration 
risks.

Results
Expansion of the attack surface and pipeline compromise 
risks. The automation inherent in CI/CD—covering build, 
testing, and deployment—greatly accelerates software 
delivery, yet simultaneously expands the attack surface for 
potential intruders. Security experts caution: “If attackers 
compromise the pipeline, it is virtually equivalent to 
controlling the entire system,” as malicious code introduced 
via a breached pipeline can covertly infiltrate the final 
product [5].

Several prominent incidents have emerged in recent years, 
exemplifying such attacks. One notable case was the 2020 
SolarWinds breach, where attackers infiltrated the update 
build process of Orion software, embedding a backdoor. 
In effect, attackers had compromised SolarWinds’ CI/
CD pipeline, inserting malicious code directly into official 
updates [6]. This attack sparked a global campaign affecting 
thousands of organizations worldwide. Another example 
occurred in 2021 with the Codecov breach, wherein 
hackers exploited a vulnerability in a widely-used CI script, 
allowing them to steal sensitive tokens from customer 
build environments [6]. These incidents illustrate a new 
threat paradigm: supply-chain attacks specifically targeting 
software development and delivery processes.

The primary source of pipeline vulnerability stems from 
its high integration and privileged access. CI/CD includes 
numerous interconnected elements—version control 
systems, build servers, artifact repositories, container 
registries, deployment scripts—each representing a 
potential attack vector. Automated tasks often execute with 
elevated privileges (e.g., deployment processes having 
access to production servers). Consequently, compromising 
even a single component (such as stealing a build system’s 
access key) grants attackers extensive opportunities. OWASP 
guidelines emphasize treating pipeline components—code 
repositories, CI servers, and build agents—as potential 
vulnerabilities due to their privileged operations and 
exploitability [2]. Concurrently, adoption of DevOps tooling 
is rapidly advancing: according to the Continuous Delivery 
Foundation’s survey, over 60% of developers in large 
enterprises already utilize CI/CD practices [5]. Thus, the 
number of potential targets is increasing, underscoring 
pipeline security as a critical necessity.

Lagging security processes relative to continuous delivery 
pace. Traditional security practices often cannot keep pace 
with the rapid cycles of DevOps. In classical models, security 
typically functioned as a distinct stage—final vulnerability 
scans and pre-release audits. However, when releases occur 
daily or multiple times per day, such a model becomes 

impractical. Hence, a “shift-left” approach is required, 
embedding continuous code analysis and vulnerability 
checks at the earliest sta m encounters several obstacles. 
Firstly, there are cultural and organizational barriers: 
development teams often perceive additional security 
procedures as impediments delaying releases. Studies 
indicate widespread resistance: 68% of executives report 
that their CEOs reject security practices perceived as slowing 
delivery [1]. Developers accustomed to autonomy and rapid 
workflow cycles frequently respond negatively to constant 
security interventions. For example, developers might 
disregard lengthy reports from static analysis tools filled with 
thousands of warnings. Thus, resistance from personnel and 
organizational silos (Dev vs. Sec vs. Ops) represents a major 
challenge.

Secondly, the inconsistency and immaturity of security 
practices pose significant difficulties. Many organizations 
implement DevSecOps components selectively: for instance, 
scanning container images without protecting the pipeline 
itself, or checking for known vulnerabilities in code without 
adequately managing secrets. This fragmented approach 
diminishes overall effectiveness. Experts frequently 
highlight issues such as misaligned processes among teams, 
absence of unified standards, and developers’ reluctance to 
fix identified vulnerabilities perceived as “false positives” or 
non-critical (see Figure 1) [8].

Figure 1. Administering security in a typical DevOps 
workflow [8]

Tool limitations further complicate matters. Integrating 
multiple security solutions (SAST, DAST, dependency 
monitoring, secret scanners) into pipelines is non-trivial. 
Tools often generate excessive noise or require manual 
configuration—both undesirable in continuous delivery 
contexts.

Modern pipeline architectures increasingly incorporate 
third-party tools and libraries: CI plugins, infrastructure-
as-code (IaC) tools (e.g., Terraform, Ansible), Docker image 



Page | 3Universal Library of Engineering Technology

Security Challenges in Continuous Software Delivery

repositories, and others. Each introduces unique risks. For 
instance, popular Jenkins plugins have experienced critical 
vulnerabilities enabling remote code execution on build 
servers. The security of dependencies also poses acute 
risks: developers routinely integrate open-source libraries 
automatically downloaded during builds. If an attacker 
compromises a popular library or repository, infected 
versions may propagate into products via CI runs. Controlling 
dependency security and package reputation, though crucial, 
remains inconsistently applied.

Another critical issue is secret management (keys, passwords, 
access tokens) within pipelines. Scripts for building and 
deployment often store credentials granting server resource 
access (see Figure 2). 

Figure 2. Managing Secrets in CI/CD [10]

If not adequately protected (e.g., plaintext configuration 
files), leaked scripts—potentially from compromised 
CI servers—could compromise sensitive resources. The 
Codecov incident demonstrated that even large corporations 
stored secrets directly within CI environments, leading to 
severe consequences when stolen [4]. Secure secret storage 
solutions (using secret management tools with restricted 
access) remain essential yet inadequately addressed by 
many DevOps teams.

The primary challenge is preserving rapid continuous 
delivery without sacrificing security. This necessitates 
automating most security checks, enabling quick and 
continual execution. Optimal practices involve establishing 
“Quality Gates” at pipeline stages to reject builds containing 

critical vulnerabilities or policy violations. Configuring these 
gates is complex: excessively strict rules risk blocking nearly 
every build, whereas overly lenient criteria might overlook 
severe risks. Organizations aim to integrate “seamless 
security” that operates transparently in the background. 
For instance, directly embedding code vulnerability 
scanners within version control systems allows automated 
analysis at pull request creation, highlighting issues before 
branch merging. Many organizations already embrace this 
approach: shift-left security and continuous security posture 
assessment have become core DevSecOps principles [7]. 
However, implementing these measures requires new skills 
and tooling across teams.

Measuring security effectiveness within continuous 
delivery also poses challenges. Traditional metrics—such 
as “vulnerabilities per release” or “days to remediate 
vulnerabilities”—lose relevance amid continuous micro-
releases. New metrics become necessary: for example, the 
percentage of builds passing all security checks, average 
response time to pipeline incidents, or vulnerabilities in 
dependencies detected before deployment. The industry 
is still defining these metrics, complicating evaluations of 
DevSecOps adoption success. Nevertheless, clear correlations 
emerge: companies with integrated security within strong 
DevOps cultures demonstrate superior speed and reliability 
in releases.

Discussion
Modern continuous delivery practices reveal multiple 
security challenges. Among the most prominent are pipeline 
vulnerabilities to external intrusions, insufficient protection 
of sensitive secrets, and a lack of automated security checks 
during early stages. Additionally, cultural conflicts often 
emerge, as developers and managers focused on rapid 
releases may neglect comprehensive security practices, 
fearing these might overly complicate the development 
cycle.

Mitigating these risks relies on several strategies: enhancing 
infrastructure isolation (segmenting build servers, limiting 
privileged access), team training (introducing secure 
coding checklists), and conducting regular workflow audits. 
Particular attention must be paid to monitoring each step of 
the pipeline, including comprehensive logging and analyzing 
anomalous activities. Table 1 summarizes frequent security 
challenges in continuous delivery and possible solutions.

Table 1. Frequent Security Issues and Recommended Solutions (Compiled by author based on original research)

Issue Description Potential Solutions
Insufficient CI/CD pipeline 
protection

Any vulnerability in build tools gives 
attackers direct access to production 
servers

Environment segmentation, end-to-end 
encryption, minimizing privileges during build 
tasks

Storing secrets insecurely Passwords and tokens occasionally 
stored as plaintext or in code

Use secure secret managers (Vault, Kubernetes 
Secrets), audit access logs

Inconsistent integration of 
scanning tools

Excessive notifications cause developers 
to ignore warnings

Integrate static analysis and dependency checks 
at early phases; prioritize critical vulnerabilities



Page | 4Universal Library of Engineering Technology

Security Challenges in Continuous Software Delivery

Lack of cross-functional 
collaboration

Dev and Sec teams operate independently, 
hindering unified security policy 
implementation

Create joint teams where security specialists 
participate directly in sprints

Unstable security monitoring High-paced releases may leave deviations 
undetected

Automate pipeline logging, integrate intrusion 
detection systems and SIEM platforms

Practical implementation of these approaches demands close 
collaboration among development, operations, and security 
teams, enabling timely identification of vulnerabilities and 
enhancing pipeline reliability. A critical success factor is 
continuous security assessment: static and dynamic scanners 
should be integrated both into local developer environments 
and pipeline stages. Managing dependencies is also crucial, 
as insecure third-party libraries can infiltrate the project 
unnoticed via automatic updates. Maintaining trusted 
source lists and regularly reviewing updates help mitigate 
this risk. Similarly, using container registries with verified 
reputations and digitally signed builds further complicates 
artifact substitution.

The outlined challenges affirm that security in a continuous 
delivery environment is multifaceted, requiring both 
technical and organizational solutions. Technically, primary 
measures include segmenting and securing the CI/CD pipeline 
itself—isolating build agents, granting minimal privileges to 
service accounts, and monitoring pipeline activity. This can 
be practically achieved by implementing specialized tools—
such as pipeline security scanners—to detect configuration 
vulnerabilities. Additionally, digitally signing artifacts and 
validating their integrity ensures detection of unauthorized 
alterations during delivery.

Regarding prevention of SolarWinds-type attacks, it is crucial 
to diversify controls, not relying solely on developers’ security 
practices but also securing the execution environment. 
Adopting a Zero Trust policy within CI environments 
ensures pipelines do not automatically trust downloaded 
dependencies or injected secrets without verification. 
Companies are increasingly adopting initiatives like SLSA 
(Supply Chain Levels for Software Artifacts)—community-
driven standards to secure software supply chains. Following 
such standards means each build stage is documented, and 
artifacts are traceable, significantly complicating covert 
injection of malicious code.

Discussing cultural challenges reveals that overcoming 
resistance and organizational silos requires structural team 
changes. DevSecOps implies integrating security professionals 
into cross-functional product teams, rather than as isolated 
departments issuing external recommendations. This 
improves mutual understanding—developers gain clearer 
insights into threats, and security teams appreciate business 
constraints. DORA research indicates high-performing 
organizations commonly employ unified, cross-functional 
teams (Dev, Ops, Sec) [3], balancing speed and security 
effectively from early stages.

Training and a shift in mindset are also essential: “Security 

is everyone’s responsibility.” Developers need foundational 
secure coding skills and awareness of typical vulnerabilities 
(SQL injection, XSS, etc.). Companies can implement security 
checklists for code reviews, organize internal workshops, 
and perform red-team exercises with subsequent analysis 
to raise awareness. When teams recognize vulnerabilities in 
their code may be quickly exploited in production, attitudes 
towards preventive measures transform significantly.

Today’s market offers numerous DevSecOps solutions, from 
container scanners to dependency analysis tools (OWASP 
Dependency Check, Snyk, and others). Selecting and correctly 
configuring these tools for automation without significantly 
slowing down pipelines is critical. Best practices include 
employing fast static analyzers during the build stage 
(immediately providing developers feedback), while more 
intensive dynamic or penetration tests run concurrently 
in separate environments [6]. Some organizations conduct 
weekly “security sprints” automatically deploying application 
versions in dedicated testing environments to perform 
comprehensive automated security tests and attacks. Results 
are then treated as regular bug reports, allowing rapid 
remediation without blocking individual builds.

Secret management represents a distinct challenge. Existing 
solutions (HashiCorp Vault, Kubernetes Secrets, CI/CD 
secret managers) securely store sensitive data. Policies 
should strictly forbid secrets from residing in code or 
plaintext; instead, pipelines should retrieve secrets from 
protected storage with audited access [3]. Implementing 
such systems significantly reduces leakage risks, a lesson 
strongly reinforced by the Codecov incident, prompting 
many organizations to enhance CI secret protection to match 
their production data safeguards.

Despite preventative efforts, incident probability remains. 
Therefore, robust pipeline security monitoring is essential: 
logging all pipeline actions (build initiation, failed tests), 
generating alerts on anomalous behaviors (such as a build 
suddenly contacting unknown external servers—potentially 
indicating compromise). Integrating CI/CD metrics with 
existing SIEM/SOC systems, traditionally monitoring 
production environments, enables comprehensive oversight. 
Effective incident response plans, including potential 
deployment freezes and emergency patch deployments—as 
demonstrated during the Log4Shell vulnerability—further 
fortify the pipeline [2].

This discussion highlights that balancing speed and security 
is achievable through sensible automation and teamwork. 
Organizations adopting DevSecOps successfully demonstrate 
maintaining rapid release cycles while significantly reducing 



Page | 5Universal Library of Engineering Technology

Security Challenges in Continuous Software Delivery

Copyright: © 2025 The Author(s). This is an open access article distributed under the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

security incidents. Nordstrom, for instance, leveraged cloud 
containers and DevOps practices to reduce deployment 
cycles from three months to 30 minutes [9], subsequently 
improving resource utilization and reliability through 
Kubernetes—simultaneously embedding advanced security 
practices.

Conclusion
Ensuring security in continuous delivery environments is 
complex yet solvable. Key challenges include pipeline attack 
surface expansion, integrating security without sacrificing 
delivery speed, and overcoming inter-departmental cultural 
barriers. Solutions require a systemic approach: technical 
reinforcement of pipeline infrastructure, automation of 
security checks at each stage, and transforming development 
processes.

Leading organizations demonstrate successful strategies:

Security integration from inception. Embedding static •	
and composition analysis tools directly into IDEs and 
version control systems, identifying vulnerabilities 
proactively before merging code.

Automated security gates. Enforcing deployment rules •	
that block builds failing critical security tests, ensuring 
critical vulnerabilities halt releases.

Dependency and secret management. Employing •	
mirrored repositories for external libraries (validated for 
integrity) and centralized secret storage with controlled 
CI/CD access.

Continuous monitoring and auditing. Logging pipeline •	
activities and regularly auditing configurations to detect 
unauthorized changes, complemented by security 
incident drills to refine response strategies.

DevSecOps culture. Educating developers on secure coding •	
fundamentals, fostering internal security champions 
within teams, and promoting the understanding that 
speed and security are complementary rather than 
opposing goals.

Continuous delivery inherently demands continuous 
security. Organizations embracing this philosophy secure 
a significant competitive advantage, enabling frequent and 
rapid updates without the constant threat of inadvertently 
introducing vulnerable code or new attack vectors. This has 
become a modern benchmark of IT process maturity. Future 
developments may introduce further integrated solutions 
(such as AI-driven vulnerability remediation based on 
identified patterns), facilitating team workflows. Yet even 

now, it is clear: security must not be an afterthought but 
rather an integral component embedded within continuous 
delivery itself.

References

Annadi, R. R. (2020). Overcoming the top 3 DevOps 1.	
security challenges. DevOps Digest. https://www.
devopsdigest.com/overcoming-the-top-3-devops-
security-challenges (accessed April 10, 2025)

Cheat Sheets Series Team. (n.d.). CI/CD security 2.	
cheat sheet. OWASP. https://cheatsheetseries.owasp.
org/cheatsheets/CI_CD_Security_Cheat_Sheet.html 
(accessed April 14, 2025)

DORA. (2021). 2021 Accelerate State of DevOps report. 3.	
https://dora.dev/research/2021/dora-report/2021-
dora-accelerate-state-of-devops-report.pdf (accessed 
April 07, 2025)

Heusser, M. (2024). CI/CD pipeline security 4.	
risks. TechTarget. https://www.techtarget.com/
searchitoperations/tip/9-ways-to-infuse-security-in-
your-CI-CD-pipeline (accessed April 04, 2025)

Luft, C. (2022). CI/CD pipeline attacks: A growing threat 5.	
to enterprise security. LimaCharlie. https://limacharlie.
io/blog/cicd-pipeline-attacks (accessed April 09, 2025)

R2Devops. (2024). Top 5 software supply chain security 6.	
incidents. https://docs.r2devops.io/blog/top-5-
cybersecurity-incidents-in-cicd/ (accessed April 12, 
2025)

Rajapakse, R., Zahedi, M., Ali Babar, M., & Shen, H. (2021). 7.	
Challenges and solutions when adopting DevSecOps: 
A systematic review. Information and Software 
Technology, 141, 106700. https://doi.org/10.1016/j.
infsof.2021.106700

Sengupta, S. (2020). Continuous delivery pipeline 8.	
security essentials. DZone. https://dzone.com/refcardz/
continuous-delivery-pipeline-security-essentials 
(accessed April 9, 2025)

The Kubernetes Authors. (n.d.). Nordstrom case study. 9.	
https://kubernetes.io/case-studies/nordstrom/ 
(accessed April 11, 2025)

Secret Management in CI/CD Pipeline. – 2022. – 10.	
URL: https://medium.com/%40pgpg05/secret-
management-in-ci-cd-pipeline-982846596181 
(accessed: 19.04.2025). – Text: electronic.


