
Page | 61www.ulopenaccess.com

ISSN: 3064-996X | Volume 2, Issue 3

Open Access | PP: 61-70

DOI: https://doi.org/10.70315/uloap.ulete.2025.0203012

Universal Library of Engineering Technology Monograph

Addressable Service for Unity: A Methodology for Rapid Packaging
and Management of Game Assets
Yurii Sulyma
Lead Unity Developer. Cubic Games, Kyiv, Ukraine.

The contemporary game industry is marked by an exponential increase in both the complexity and volume of digital assets,
particularly within games-as-a-service (GaaS) models. In this environment, efficient content management constitutes a
critical determinant of success. Although Unity’s Addressable Assets system is functional, its standard workflow remains
largely manual, rendering it labor-intensive, error-prone, and inefficient under fast iterative cycles. This study introduces an
academic methodology for implementing and utilising an “Addressable Service,” an integrated toolset that fully automates
asset packaging, dependency handling, and categorization. The service is driven by a static dependency-graph analysis
algorithm complemented by heuristic rules and a flexible configuration system. Empirical validation on production cases
demonstrated a reduction in per-asset processing time of up to 97 % (from 10 minutes to 3–5 seconds), a near-total
elimination of missed-dependency errors, and build-preparation speed-ups of up to 40 % in pilot teams. The proposed
methodology offers a reproducible, scalable approach to optimizing production pipelines, enabling development teams to
reallocate resources from routine tasks to creative and technical problem-solving.

Keywords: Unity, Addressable Assets, Asset Management, Automation, CI/CD, GaaS, Performance Optimization, Development
Pipeline.

Abstract

Citation: Yurii Sulyma, “Addressable Service for Unity: A Methodology for Rapid Packaging and Management of Game Assets”,
Universal Library of Engineering Technology, 2025; 2(3): 61-70. DOI: https://doi.org/10.70315/uloap.ulete.2025.0203012.

Introduction

Over the past decade the paradigm of video-game
development and distribution has undergone a fundamental
transformation. The industry has shifted en masse from the
classic monolithic model – where a game was released as a
finished product – to the Games-as-a-Service (GaaS) model
[1]. Within GaaS, a game functions as a dynamic platform
that evolves continuously through regular content updates,
seasonal events and the introduction of new mechanics [2].
Industry reports indicate that more than 60 % of studios
view maximizing the value of existing titles via live-ops as
a key strategy for mitigating risk and extending a product’s
life-cycle [3].

This shift has radically altered the requirements placed on
content-management systems. The demand for frequent,
rapid and reliable updates clashes directly with traditional,
slow and manual asset pipelines. Manually processing
thousands of assets for every update becomes not merely
labor-intensive but a strategic bottleneck that restricts a
studio’s ability to respond promptly to audience requests and

to maintain player engagement [2]. Consequently, automating
the content pipeline is no longer a matter of convenience; it
is a technological necessity that underpins the viability of
the modern business model in the game industry.

In response to these contemporary content-management
challenges, Unity Technologies introduced the Addressable
Assets system. This technology offers a high-level abstraction
over the more complex AssetBundles system and is designed
to simplify the management of game resources [4]. The key
principles of the Addressables system include:

Decoupling: The system separates asset-loading logic •	
from the asset’s physical location. An asset is identified
by a unique address (a string) rather than by a direct
project path, allowing its location – for example, moving
it from local storage to a remote server – to be changed
without modifying game code [5].

Asynchronous loading: All asset-loading operations •	
are executed asynchronously, preventing blockage of
the main thread and enabling smooth, dynamic user
interfaces and game scenes [6].

Page | 62Universal Library of Engineering Technology

Addressable Service for Unity: A Methodology for Rapid Packaging and Management of Game Assets

Automatic dependency management: When an asset •	
is requested, the system automatically resolves, loads
and tracks all of its dependencies (such as materials,
textures and shaders). This greatly simplifies workflows
compared with the manual dependency handling
required by AssetBundles [7].

Despite these advantages, the basic Addressables workflow
still demands substantial manual intervention, which
constitutes the core problem examined in this study.

The standard pipeline requires developers to perform a series
of repetitive tasks by hand: tagging assets as “Addressable,”
assigning them to logical groups and, crucially, tracking all
associated dependencies to ensure correct packaging [8].
This approach entails several critical drawbacks:

High labor intensity: In projects with thousands of •	
dynamically loaded assets – characters, items and
environment elements – manually processing each asset
results in enormous time expenditures.

Human error: Manual handling inevitably leads to •	
mistakes. The most common are missed implicit
dependencies, which cause visual artefacts (“pink”
materials) or runtime errors in the built game, and asset
duplication across bundles, which wastes RAM and
increases build size [9].

Scalability issues: As team size and project complexity •	
grow, the manual approach becomes unmanageable. The
absence of unified rules and automated control fosters
chaos within the Addressables structure, complicating
maintenance and future development [10].

The aim of this work is to develop and present a reproducible
academic methodology for introducing and applying an
“Addressable Service” tool that fully automates asset-
packaging and management processes in Unity.

To achieve this aim, the following tasks were defined:

Analyze and deconstruct the shortcomings of the 1.	
classical manual approach to Addressables.

Design and describe in detail the architecture of the 2.	
automation service, including its key components and
algorithms.

Provide a step-by-step algorithm for integrating and 3.	
using the service in a game project.

Establish a set of key performance indicators (KPI) to 4.	
assess implementation results and formulate practical
recommendations for optimizing the content pipeline.

The expected practical effect of adopting the methodology is a
radical reduction in asset-management time, a minimisation
of human-factor errors and, consequently, accelerated
development iterations, greater stability and improved
performance of the final product.

Problem Statement of the Classical Approach to
Addressables

To understand the limitations of the existing method, it is
necessary to examine in detail the sequence of actions a
developer performs when configuring an asset manually
in the Addressables system. A typical scenario unfolds as
follows:

Asset selection. The developer locates the required asset 1.	
(for example, a prefab) in the Project window of the
Unity Editor.

Asset tagging. In the Inspector window, the developer 2.	
checks the Addressable flag for the selected asset. At this
moment Unity automatically generates a unique address,
usually derived from the asset’s project path [8].

Group assignment. The asset is initially placed in the 3.	
default group (Default Local Group). The developer must
manually drag it into the appropriate group (for example,
Characters or Remote_DLC_Level1) in the Addressables
Groups window [7].

Dependency analysis and processing. This is the most 4.	
critical and labor-intensive stage. The developer must
manually analyze all dependencies of the selected
asset. For a prefab these may include meshes, materials,
textures, animations, audio clips and even nested
prefabs. For each dependency a decision is required:

If the dependency should be loaded separately, it оо

must also be tagged as Addressable and placed in the
corresponding group.

If the dependency should be packed together with the оо

parent asset, it must remain untagged so that the system
implicitly includes it in the same AssetBundle [9].

Most problems arise at the fourth stage because it demands
a deep understanding of the asset structure and error-free
execution of monotonous actions.

The manual workflow also contains systemic vulnerabilities
that regularly lead to defects in the final product and an
increase in production costs:

Missing dependencies. This is the most frequent and •	
difficult-to-diagnose issue. If a prefab references a
material that in turn uses a texture, and the texture is
not processed correctly (not tagged as Addressable and
not visible for implicit inclusion), the prefab will render
incorrectly in the built game. Often the material appears
bright pink, indicating a missing shader or texture [11].
Debugging such problems is time-consuming because
the error manifests only in the compiled build, not in the
editor.

Asset duplication. Unity can include the same asset •	
multiple times in a build if it is referenced from different
sources that are packed independently. For example,
if a shared texture is used in a prefab located in the

Page | 63Universal Library of Engineering Technology

Addressable Service for Unity: A Methodology for Rapid Packaging and Management of Game Assets

Resources folder (the legacy approach), in a scene listed
in Build Settings and in a prefab tagged as Addressable,
three copies of that texture may appear in the final build
[9]. This leads to excessive memory consumption and
increases the distribution size. Manual tracking of such
duplicates is practically impossible in projects containing
tens of thousands of assets.

Confusion in groups and labels. Without strict •	
conventions and automated control, developers may
place assets in inappropriate groups (for example, a
locally used asset in a remote group) or assign incorrect
labels. This complicates loading logic, disrupts caching
and content-delivery strategies (DLC, updates) and
makes asset management chaotic and unpredictable
[12].

To estimate the economic impact of an inefficient manual
workflow, a calculation was carried out on the basis of data
obtained from a pilot project.

Average time to handle a single asset manually. •	
Considering dependency analysis, decision-making and
all editor manipulations, an average of 10 minutes is
required per asset.

Typical asset volume in a project. A contemporary mid-•	
scale mobile or desktop title can easily include 1 000 or
more dynamically loaded assets – character and enemy
models, weapons, environment elements, UI icons, and
so forth.

Total labor cost:•	

This figure is equivalent to 20.8 working days (assuming an
eight-hour workday) spent by a skilled specialist on a purely
routine packing task.

However, direct labor hours are only the tip of the iceberg.
Hidden costs far exceed this estimate. First, there is the
opportunity cost: time allocated to asset packing is not
devoted to new mechanics or performance optimization.
Second, there are quality-assurance expenses: mistakes
made during manual packing must be detected, documented
and corrected. Third, operational and reputational risks
arise: errors that slip through QA and reach release require
emergency hot-fixes, erode player trust and place additional
load on the support team. In sum, the manual process
introduces systemic friction that slows the entire production
cycle, not merely the asset-management stage.

To contextualize the proposed methodology, it must
be compared with existing and preceding Unity asset-
management approaches. Table 1 presents a comparative
analysis of three key methods: the legacy Asset-Bundle-
Browser tool, the standard manual Addressables workflow
and the Addressable Service described in this study.

Table 1. Comparative analysis of Unity asset-management approaches

Criterion Asset-Bundle-Browser (legacy) Manual Addressables
workflow

Addressable Service (proposed)

Dependency management Fully manual, high error risk Semi-manual, requires explicit
developer control

Fully automatic (dependency-graph
scanning)

Packaging speed Low; scripting and maintenance
required

Medium (dependency analysis
is the bottleneck)

High (3–5 seconds for a complex
asset)

Susceptibility to errors Very high High (missed dependencies,
duplicated assets)

Low (human factor minimized)

Entry threshold High (deep AssetBundles
knowledge required)

Medium (must grasp
Addressables concepts)

Low (managed via editor context
menu)

CI/CD integration Difficult; extensive custom
scripting needed

Possible, but wrapper scripts
around the API are required

Native (ready-made static methods
available)

Scalability Low, ill-suited to large projects
and teams

Medium, scales poorly as
complexity rises

High, designed for large-scale projects

The data show that the Addressable Service represents
not merely an incremental improvement but a qualitative
leap toward full automation. It eliminates the principal
weaknesses of both the legacy approach (complexity and
error-proneness) and the present standard (manual labor
and inefficiency), making it an optimal choice for modern
production pipelines.

Architecture of the Addressable Service

The proposed Addressable Service is designed as a modular,

extensible system that integrates deeply into the Unity
Editor. Its architecture pursues two principal objectives:
maximal automation of routine operations and provision
of flexible tools for fine-grained adjustment and seamless
incorporation into existing pipelines.

At a high level the service comprises several interacting
components (Figure 1) that together support the entire
asset-handling cycle, from the user command to the final
configuration in the Addressables system.

Page | 64Universal Library of Engineering Technology

Addressable Service for Unity: A Methodology for Rapid Packaging and Management of Game Assets

Figure 1. Architectural diagram of the Addressables management service

The core of the service is the dependency scanner. It applies static-analysis techniques to Unity project metadata in order to
construct a complete dependency graph for any selected asset (Figure 2) [13].

Figure 2. Flow chart of the algorithm

Page | 65Universal Library of Engineering Technology

Addressable Service for Unity: A Methodology for Rapid Packaging and Management of Game Assets

Operation of the algorithm proceeds as follows.

The service receives as input the path of the root asset 1.	
initiated by the user (for example, Assets/Prefabs/
Player.prefab).

It invokes the built-in Unity API method AssetDatabase.2.	
GetDependencies(path, recursive: true), which returns
an array of strings containing the paths of all files on
which the source asset depends, directly or indirectly.

The system then iterates through this array and, for each 3.	
path found, performs the following checks:

Exception check. The path is compared with the rule list •	
in the exception-configuration file; if a match is detected,
the asset is ignored.

File-type check. Script files (.cs) are excluded because •	
they cannot be packed directly into AssetBundles; they
are compiled into C# assemblies instead [4].

If the asset passes all checks, the service employs 4.	
the Addressables API (AddressableAssetSettings.
CreateOrMoveEntry) to tag the asset as Addressable and
assign it to a group.

The distinguishing feature of this approach is the “Try To Mark
All Formats” heuristic. The service deliberately attempts to
mark every discovered dependent resource (except those
explicitly excluded) as Addressable. This guarantees that no
dependency, however deeply nested – for example, an albedo
texture for a material assigned to a mesh inside a prefab – is
overlooked. The method therefore eliminates the entire class of
errors associated with missing dependencies.

To simplify Addressables usage at runtime, the service

provides two auxiliary MonoBehaviour components that
implement well-known design patterns.

LazyAddressable.  This component is an implementation•	
of the Lazy-Loading pattern [14]. It contains a field of
type AssetReference that points to an Addressable asset
yet does not trigger loading when the object is created
or the scene starts. The asset is loaded asynchronously
only on the first access to the Value property or a call
to Get(). The component encapsulates all complexity
related to AsyncOperationHandle management and
release, offering developers a clear, straightforward
interface. Employing this component markedly reduces
peak memory consumption and shortens initial scene-
load times because only the resources actually required
at a given moment are brought into memory.

RemoteAddressable.  This wrapper is tailored for •	
assets located in remote groups (for example, on a
CDN). It extends the functionality of LazyAddressable by
adding logic for

– verifying network availability before attempting a
download,

– handling load errors, including automatic retry attempts
(relying on the Retry Count setting in Addressables group
parameters) [15], and

– displaying temporary placeholders while the main content
is being fetched and loaded.

To keep a project organized, the service also includes a
mechanism for automatically distributing assets into groups
and assigning labels on the basis of configurable rules.

Figure 3. Diagram of the automatic-grouping mechanism

Page | 66Universal Library of Engineering Technology

Addressable Service for Unity: A Methodology for Rapid Packaging and Management of Game Assets

By default, the grouping logic is based on the file path.
For example, every asset located in Assets/Content/UI/
MainMenuis automatically placed in the group UI_MainMenu_
Group. Labels are assigned according to asset type – identified
through calls such as AssetDatabase.FindAssets(“t:Texture”)
– and the names of sub-folders. This approach applies best
practices from Digital Asset Management (DAM), where a
consistent taxonomy and tagging system are key to scalability,
retrieval and governance of an asset library [16]. Automating
the procedure eliminates the inconsistency introduced when
different team members configure assets manually.

To give developers flexibility and control over the automation
process, the service employs an exception-configuration
file. This file can be implemented as a ScriptableObject or a
simple JSON document and contains a list of paths, patterns
or file types that the dependency scanner must ignore [17].

Example contents of an exception file:

private static Type TryToMarkAllFormats()
{
 // Load the configuration
 AddressableConfig config =
 AssetDatabase.LoadAssetAtPath(ConfigPath) as
AddressableConfig;

 // Check the format and component
 if (config.FileFormatsToAddressable.Contains(“.png”)
&&
 Selection.activeGameObject.TryGetComponent(out
SpriteRenderer _))
 {
 MarkSpriteAsAddressable();
 return typeof(SpriteRenderer);
 }
}

This mechanism makes it possible to exclude editor-only
assets, scripts and resources managed by other systems
– or assets that must be packed under special rules – from
automatic processing.

The service architecture was designed from the outset for
extension and integration into more complex production
pipelines. Key methods such as AddressableService.
PackAssetByPath(string path) and AddressableService.
BuildPlayerContent() are public and static, allowing them
to be invoked from any other editor script, including those
used in continuous-integration and continuous-delivery (CI/
CD) systems such as Unity Build Automation (formerly Unity
Cloud Build) or Jenkins [18]. Consequently, automatic asset
packing can become a seamless component of the project’s
overall build-and-deploy process.

Step-by-Step Project Integration

Introducing the Addressable Service into an existing or newly
created Unity project is a standardized process that unfolds

through a series of sequential steps. The methodology is
designed to minimise the entry barrier and deliver a rapid
start.

For the service – and the Addressables system in general
– to operate correctly, the project must meet the following
technical requirements:

Unity Editor version: 2020.3 LTS or later. Selecting an •	
LTS (Long-Term Support) release ensures maximum
stability and predictability under production conditions,
which is critical for long-term projects [19].

Addressables package: version 1.18.0 or later. Earlier •	
versions may lack certain API calls used by the service or
contain known bugs fixed in subsequent releases [20].

Git client: The developer’s machine must have a Git •	
client installed, and the path to its executable must be
added to the system’s PATH environment variable. This
is a standard Unity Package Manager requirement when
working with packages hosted in Git repositories [21].

The Addressable Service is installed directly from a Git
repository via the Unity Package Manager (UPM), the modern
and recommended distribution channel for Unity tools.

Installation procedure

In the Unity Editor, open the Package Manager window 1.	
by choosing Window > Package Manager.

In the upper-left corner of the window, click the + icon.2.	

In the drop-down menu, select Add package from git 3.	
URL… [22].

Paste the full Git-repository URL hosting the Addressable 4.	
Service (e.g. https://github.com/your-company/
addressable-service.git) into the text field.

Click Add.5.	

After these actions, the Unity Package Manager automatically
downloads the latest version of the package from the
specified repository, installs it in the project and resolves all
necessary dependencies [21].

Once installation is successful, it is advisable to perform a
quick functionality check on a demonstration example.

Verification scenario:

Create a test prefab in the project. Add several 1.	
dependencies: create a new material, assign it to the
prefab and assign one or more textures to the material.

In the Project window, right-click the prefab you have 2.	
just created.

In the context menu select Addressable Service > Auto-3.	
pack Addressable.

Open the Unity console (Window > General > Console) 4.	
and confirm that log messages from the service

Page | 67Universal Library of Engineering Technology

Addressable Service for Unity: A Methodology for Rapid Packaging and Management of Game Assets

report successful processing of the asset and all its
dependencies.

Open the Addressables Groups window (Window > 5.	
Asset Management > Addressables > Groups). Verify that
the prefab, its material and its textures have been added

automatically to the appropriate group and tagged as
Addressable.

During adoption of the new tool, typical issues can arise.
Table 2 lists the most common problems together with
recommended solutions.

Table 2. Typical errors during integration and their remedies

Error (console message) Probable cause Remedy

No ‘Git’ executable was found.
Please install Git and make sure
it is in your PATH.

The Git client is not installed on the
computer, or its path is not added to
the system PATHvariable.

Install Git from the official site. During
installation make sure the option to add Git to
PATH is selected. Restart Unity Hub and the
Unity Editor.

Cannot find entry for address
‘…’ when attempting to load an
asset at runtime.

The asset was marked as Addressable,
but the AssetBundles themselves were
not built, so the content catalogue lacks
information about the asset.

In the Addressables Groups window, build the
bundles via Build > New Build > Default Build
Script.

ArgumentException: The Object
you want to instantiate is null.

An attempt is made to load a prefab
in Packed Mode with Addressables.
LoadAssetAsync<GameObject>()
followed by Instantiate(). This pathway
does not always work correctly for
instantiation.

Use the specialized method Addressables.
InstantiateAsync() to create prefab instances.
Review the asset-loading code.

Materials on objects in the build
appear pink.

The shader used by the material was
not included in the AssetBundle,
or it was compiled for the target
platform (e.g. Android/OpenGL ES)
and is incompatible with the editor’s
rendering API (e.g. DirectX/Metal).

Make sure the shader and all of its variants
are also tagged as Addressable or are included
in the build by another means. If the error
appears only in the editor’s Packed Play Mode
but everything is correct on the target device,
treat it as a false positive.

This troubleshooting guide serves as a practical supplement
to the methodology, reducing potential difficulties during
onboarding and accelerating the integration of the tool into
the production environment.

Practical Recommendations and Metrics

Successful adoption of the Addressable Service involves more
than installing the tool; it also requires configuring the system
to match project goals and established asset-management
best practices. This section supplies optimization advice and
a metrics framework for gauging effectiveness.

To realise the full potential of the Addressables system,
follow the checklist below.

Partitioning into local and remote groups (Local/Remote
Groups)

Local groups.•	 These should contain assets that are critical
for application start-up and the initial user experience
– core UI, logos, assets for the main menu and the first
tutorial level. Such resources are packaged directly in
the game build and remain available without a network
connection [23].

Remote groups.•	 All optional and post-release content
– assets for subsequent levels, characters, items,

downloadable content (DLC) and seasonal events –
belongs here. Hosting these assets on a remote server
(CDN) substantially reduces the initial download size, a
factor that is crucial for mobile platforms [24].

Configuring build and load paths (Build & Load Path)

Employ the profile system (Profiles) for flexible •	
path management and create at least two profiles:
Development and Production [8].

In the Development profile, the RemoteLoadPath •	
variable may point to a local HTTP server started from
the Unity Editor. This arrangement enables testing of
remote-content loading without uploading assets to a
live CDN on every iteration, greatly accelerating the loop
[25].

In the Production profile, RemoteLoadPath must •	
reference the URL of the production CDN, such as Unity
Cloud Content Delivery or Amazon S3.

Choosing a compression strategy:

Local bundles: Use LZ4 compression. It delivers very •	
high decompression speed with a solid compression
ratio and is the standard option for content that must
load quickly from local storage [26].

Page | 68Universal Library of Engineering Technology

Addressable Service for Unity: A Methodology for Rapid Packaging and Management of Game Assets

Remote bundles: LZMA is optimal. The algorithm offers •	
maximum compression, reducing file size and saving
user bandwidth. On first download the bundle is cached
on the device and, by default, is re-compressed into an
uncompressed format or LZ4 to accelerate subsequent
loading from cache [27].

Determining bundle granularity

Several packing modes are available in the Addressables •	
group settings (Content Packing & Loading > Bundle
Mode). For groups containing many assets that need to
be loaded and unloaded independently – for example,
individual inventory items or cards in a collectible
game – the Pack Separately mode is recommended.
In this configuration the system creates a dedicated
AssetBundle for each asset in the group. As soon as the
final reference to an asset is released, its bundle can
be removed from memory, preventing a single active
asset from retaining a large bundle that holds dozens of
unneeded resources [28].

Integration of the Addressable Service into a continuous-
integration and delivery pipeline (CI/CD) is the logical
culmination of automating the content workflow, producing
a fully automated path from an asset commit to player
delivery.

Example scenario for Unity Build Automation and Cloud
Content Delivery (CCD):

Pre-build script configuration. In the Build Automation 1.	
configuration settings, a path to a script that executes

before the main player build is specified. This script calls the
static method AddressableService.BuildPlayerContent(),
which triggers automatic packaging of all modified
assets and builds the Addressables bundles.

Unity Dashboard configuration. In the Unity Dashboard 2.	
web interface, the Build Addressables option is enabled
for the relevant Build Automation configuration, and
automatic upload of the built bundles to a designated
bucket in Unity Cloud Content Delivery is set up [29].

Use of badges and post-build scripts. CCD’s badge system 3.	
is recommended for release management – for example, a
latest-staging badge. After a successful build and content
upload to CCD, a post-build script can automatically
move this badge to the new release, making it available
to the QA team [30]. Once testing is complete, promotion
to production can be performed manually through the
dashboard or, likewise, automated via the CCD API [31].

The combination of the Addressable Service (automated
packaging), Unity Build Automation (automated builds) and
Unity CCD (automated delivery) forms a powerful live-ops
flywheel, enabling new content and fixes to reach players
within hours – or even minutes – of a developer’s commit,
without issuing and publishing an entirely new client version
through app stores.

To quantify the benefits of the methodology, a set of key
performance indicators (KPI) must be tracked, analogous
to effectiveness assessments for Digital Asset Management
(DAM) systems in other industries [32].

Figure 4. Comparison of metrics before and after implementation

Primary KPIs for monitoring:

Content build time:•	 the total duration required to execute
the Addressables build script. After automation, this
metric should fall from hours to minutes.

Peak RAM footprint:•	 the maximum RAM used by the
application during a typical play session. Granular
packaging (Pack Separately) and timely unloading of
unused bundles reduce this figure.

Page | 69Universal Library of Engineering Technology

Addressable Service for Unity: A Methodology for Rapid Packaging and Management of Game Assets

Asset-related errors:•	 the number of bug-tracker issues
linked to broken references, missing assets or duplicates.
The target value after implementation is zero.

Conclusion

The methodology for implementing and employing the
Addressable Service for Unity provides a comprehensive
solution to one of the most acute challenges in contemporary
game development: the inefficiency of manual management
for dynamically loaded content. Analysis and pilot trials
demonstrate that the proposed approach delivers significant
improvements across key production metrics.

Key findings:

Radical resource savings. Automating asset packaging •	
with the service reduces the time required for this
operation by up to 97 %, releasing hundreds of expert
person-hours for higher-priority tasks.

Increased pipeline reliability. Algorithmic dependency-•	
graph analysis virtually eliminates human-factor errors
such as missed dependencies and duplicated resources,
resulting in more stable builds and less strain on QA
teams.

Creation of a scalable architecture. The methodology •	
establishes a foundation for a flexible, scalable content
pipeline that integrates easily with CI/CD systems
and cloud content-delivery services (CCD), a critical
capability for GaaS projects that demand frequent, rapid
updates.

The greatest economic and technological benefits are
expected for mid-scale and large-scale projects that feature
a substantial number of dynamically loaded assets or rely on
a live-service model. For small projects with predominantly
static content, the gains from full automation may be less
pronounced relative to the initial implementation effort.

Future development of the Addressable Service will focus
on expanding functionality and achieving deeper integration
within modern production ecosystems:

Support for custom AssetBundle formats. Development •	
of plug-ins to handle proprietary or modified bundle
formats (for example, encrypted or additionally
compressed archives).

Integration with third-party CDNs. Addition of built-in •	
connectors for automatic upload and management of
content on widely used platforms such as Amazon S3,
Microsoft Azure Blob Storage and Google Cloud Storage,
offering alternatives to Unity CCD.

Application of artificial-intelligence technologies. •	
Exploration of AI models for automatic tagging and
categorization of assets based on visual or audio content,
further automating asset organisation in line with current
trends in DAM and AI tools in game development.

Overall, the methodology represents not merely a set of tools
but a coherent philosophy for constructing a content pipeline
founded on the principles of automation, reliability and
scalability – fully aligned with the demands of the modern
game industry.

References
Game-as-a-Service (GaaS): What Is It And Why Is It 1.	
Needed? - Juego Studio. URL: https://www.juegostudio.
com/blog/game-as-a-service-gaas-what-is-it-and-why-
is-it-needed

Live Service Games Thrive with AI-Powered Video Game 2.	
Production Tools for Ongoing Updates - Inoru. URL:
https://www.inoru.com/blog/live-service-games-ai-
powered-video-game-production-tools/

2025 Unity Gaming Report: Gaming Industry Trends. 3.	
URL: https://unity.com/resources/gaming-report

Unity Asset Bundles tips and pitfalls. URL: 4.	 https://unity.
com/blog/engine-platform/unity-asset-bundles-tips-
pitfalls

Simplify your content management with Addressables | 5.	
Video game URL: https://unity.com/how-to/simplify-
your-content-management-addressables

Addressables - Unity - Manual. URL: 6.	 https://docs.
unity3d.com/6000.1/Documentation/Manual/com.
unity.addressables.html

Addressable Assets in Unity - Game Dev Beginner. URL: 7.	
https://gamedevbeginner.com/addressable-assets-in-
unity/

Level Up Your Asset Management With Unity 8.	
Addressables - Diversion. URL: https://www.diversion.
dev/blog/level-up-your-asset-management-with-unity-
addressables

Asset dependencies overview | Addressables | 2.0.8 9.	
- Unity - Manual. URL: https://docs.unity3d.com/
Packages/com.unity.addressables@2.0/manual/
AssetDependencies.html

Solving Asset Management Challenges for Industry 10.	
Leaders - Unity. URL: https://unity.com/resources/
solving-asset-management-challenges

Unity Addressables : various problems you might come 11.	
across | by URL: https://medium.com/@5argon/
unity-addressables-various-problems-you-might-come-
across-7c417e14fe2c

Unity Addressables System: A Complete Guide - Wayline. 12.	
URL: https://www.wayline.io/blog/unity-addressables-
system-complete-guide

Testing Static Analyses for Precision and Soundness 13.	
- Virtual Server List. URL: https://users.cs.utah.
edu/~regehr/cgo20.pdf

Page | 70Universal Library of Engineering Technology

Addressable Service for Unity: A Methodology for Rapid Packaging and Management of Game Assets

Boosting Performance with Lazy Loading in C# .NET 14.	
Core. URL: https://www.c-sharpcorner.com/article/
boosting-performance-with-lazy-loading-in-c-sharp-
net-core/

CCD FAQ - Unity documentation. URL: 15.	 https://docs.
unity.com/ugs/manual/ccd/manual/UnityCCDFAQ

A Beginner’s Guide to Digital Asset Management 16.	
Taxonomy. URL: https://www.demoup-cliplister.com/
en/blog/dam-taxonomy/

Manage exclusion lists of CMDB Data Manager - 17.	
ServiceNow. URL: https://www.servicenow.com/docs/
bundle/washingtondc-servicenow-platform/page/
product/configuration-management/task/manage-
data-mgr-ci-exclusion-list.html

CI/CD Cloud Build Automation & Deployment Tools | 18.	
Unity. URL: https://unity.com/solutions/ci-cd

Addressables - Unity - Manual. URL: 19.	 https://docs.
unity3d.com/2020.3/Documentation/Manual/com.
unity.addressables.html

Continuous integration | Addressables | 1.18.19 - 20.	
Unity - Manual. URL: https://docs.unity3d.com/
Packages/com.unity.addressables@1.18/manual/
ContinuousIntegration.html

Install a UPM package from a Git URL - Unity - Manual. URL: 21.	
https://docs.unity3d.com/6000.1/Documentation/
Manual/upm-ui-giturl.html

Usage | NuGet importer for Unity documentation - 22.	
GitHub Pages. URL: https://kumas-nu.github.io/NuGet-
importer-for-Unity/documentation/usage.html

Organize Addressable assets | Addressables | 1.21.21 23.	
- Unity - Manual. URL: https://docs.unity3d.com/
Packages/com.unity.addressables@1.21/manual/
organize-addressable-assets.html

Addressables In Unity - Ali Emre Onur - Medium. URL: 24.	
https://aliemreonur.medium.com/addressables-in-
unity-eec8b03198d7

mikerochip/addressables-training-manual: Bringing 25.	
clarity to Unity’s Addressables system. URL: https://
github.com/mikerochip/addressables-training-manual

Unity Addressables: Compression Benchmark | 26.	
TheGamedev.Guru. URL: https://thegamedev.guru/
unity-addressables/compression-benchmark/

Addressables FAQ | Addressables | 1.16.19 - Unity - 27.	
Manual. URL: https://docs.unity3d.com/Packages/com.
unity.addressables@1.16/manual/AddressablesFAQ.
html

Tales from the optimization trenches: Saving memory 28.	
with ... - Unity. URL: https://unity.com/blog/technology/
tales-from-the-optimization-trenches-saving-memory-
with-addressables

Build Addressables with Build Automation - Unity 29.	
documentation. URL: https://docs.unity.com/ugs/
manual/devops/manual/build-automation/advanced-
build-configuration/build-addressables-using-build-
automation

Welcome to Cloud Content Delivery (CCD) - Unity 30.	
documentation. URL: https://docs.unity.com/ugs/
manual/ccd/manual/UnityCCD

Your questions: Cloud Content Delivery and Addressables 31.	
- Unity. URL: https://unity.com/blog/engine-
platform/your-questions-cloud-content-delivery-and-
addressables

Top 7 Key performance indicators to measure your 32.	
DAM success. URL: https://www.paperflite.com/blogs/
digital-asset-management-kpi

Copyright: © 2025 The Author(s). This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

