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This article systematizes the engineering challenges encountered by the author when scaling fintech systems from inception 
to millions of users, including ensuring ultra-low latency, transactional consistency, and high availability. As a solution, 
a comprehensive framework is proposed, based on orchestrating containerized applications using Kubernetes, applying 
high-performance data handling patterns such as Command Query Responsibility Segregation (CQRS), and analyzing the 
architectural implications of integrating artificial intelligence (AI) technologies. The aim of the study is to systematize 
engineering challenges related to scaling FinTech platforms and to propose a framework of architectural patterns and 
cloud-oriented solutions to overcome them. The scientific novelty of the work lies in synthesizing fundamental distributed 
systems theory, modern cloud-native development practices, and forward-looking analysis of AI’s architectural impact. 
This synthesis forms a comprehensive guide bridging the gap between academic theory and applied engineering practice, 
offering a strategic approach to building next-generation FinTech systems. The methodological basis of this work is founded 
on a synthetic approach that combines several research methods to form an analysis of the problem of scaling FinTech 
systems. The work demonstrates the practical significance of the proposed model, derived from the author’s applied 
experience, for building fault-tolerant and high-performance financial systems that withstand extreme loads and comply 
with strict industry requirements.
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INTRODUCTION
Financial technologies (FinTech) are transforming the 
traditional financial industry by creating new models of 
customer interaction and opening access to financial services 
for broad user groups.  Barroso M., Laborda J. , as a result 
of a systematic review, identified 188 concepts grouped into 
nine thematic clusters — issues, regulation, cooperation, 
and others — highlighting the interdisciplinarity and rapid 
development of research in the field of FinTech [1]. Khan R. 
A. et al. During the cartographic study, the existing software 
development practices in startups were analyzed, noting 
that only a small part demonstrate high scientific rigor, while 
the majority adapt to limited resources and dynamic market 
conditions [7]. At the same time, an analysis of 86 startup 
cases showed that the most severe form of technical debt 
accumulates in the testing subsystem, significantly hindering 
rapid product deployment to the market [5].

A central problem impeding scaling is the architectural legacy 
of many startups that begin with a monolithic architecture. 

This article builds on the author’s prior research in cloud IT 
infrastructures [11] and hybrid financial storage architectures, 
extending those foundations into a comprehensive study of 
end-to-end scaling challenges in fintech platforms. While a 
monolith is effective in the early stages for rapid prototype 
development, as load and functional complexity grow, it 
becomes a technological barrier. Key bottlenecks include 
database contention, where competing operations slow 
down the entire system; tight coupling of components, in 
which even minor changes require a complete redeployment 
of the application, slowing down development cycles; and 
the inability to scale individual services independently. If the 
load increases on a single functional module, for example, 
on the payment processing service, in a monolithic system it 
becomes necessary to scale the entire application, leading to 
inefficient resource utilization.

The integration of AI/ML for tasks such as Risk Management, 
algorithmic trading, fraud detection, and market sentiment 
analysis creates new, computationally intensive, and 
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resource-demanding workloads. Machine learning models, 
particularly in the areas of Reinforcement Learning and 
Natural Language Processing, require access to large volumes 
of real-time data, placing extreme demands on throughput 
and latency in data processing systems. Legacy systems, 
designed without consideration for such workloads, are 
unable to handle them efficiently.

The aim of the study is to systematize engineering challenges 
related to scaling FinTech platforms and to propose a 
framework of architectural patterns and cloud-oriented 
solutions to overcome them.

The research objectives include: 1) analyzing trade-offs in 
transitioning from monolithic to microservice architecture; 
2) substantiating the use of Kubernetes as a platform for 
orchestration and ensuring high availability; 3) detailed 
examination of high-performance data handling patterns 
such as sharding and CQRS; 4) analyzing the impact of AI/ML 
on architectural requirements; 5) validating the proposed 
framework based on a practical case of scaling a trading 
platform.

The scientific novelty of the work lies in synthesizing 
fundamental distributed systems theory, modern cloud-
native development practices, and forward-looking 
analysis of AI’s architectural impact. This synthesis forms 
a comprehensive guide bridging the gap between academic 
theory and applied engineering practice, offering a strategic 
approach to building next-generation FinTech systems.

The author’s hypothesis is that sustainable scaling of 
FinTech platforms from zero to millions of users is possible 
only through the synergy of transitioning from a monolithic 
to a microservices architecture, orchestration via Kubernetes, 
the application of data processing patterns (CQRS, sharding, 
caching), and architectural solutions that take into account 
the real-time and high-availability requirements of AI/ML.

MATERIALS AND METHODS      
The methodological basis of this work is founded on a 
synthetic approach that combines several research methods 
to form an analysis of the problem of scaling FinTech 
systems. The core of the study is a systematic literature 
review covering peer-reviewed scientific articles from 
leading academic databases. This method makes it possible 
to establish the theoretical foundation of the work, relying 
on well-established concepts and the latest research in the 
field of distributed systems and software engineering. In 
addition, content analysis is applied to authoritative technical 
documents, industry reports, and engineering blogs of 
leading technology companies. This approach ensures the 
enrichment of the theoretical basis with practical data and 
real-world examples of the implementation of the discussed 
technologies.

The source base for conducting the study is classified into 
three main categories, which ensures the completeness and 
reliability of the analysis:

Theoretical foundations: Fundamental works on the design 
of distributed systems, such as Designing Data-Intensive 
Applications by M. Kleppmann, as well as seminal scientific 
articles describing the architecture of such systems as Google 
Spanner and Amazon DynamoDB. These sources form the 
basis for understanding the key trade-offs in distributed 
systems, in particular between consistency, availability, and 
partition tolerance, known as the CAP theorem.

Market and industry analysis: Reports and publications from 
leading financial and consulting organizations, including 
the CFA Institute, World Economic Forum, JPMorgan, and 
McKinsey. Data from these sources are used for quantitative 
assessment of market trends, justification of the relevance 
of the topic, and analysis of the impact of AI on the financial 
sector.

Practical implementation patterns: Technical documentation 
from leading cloud providers (AWS, GCP) and publications 
from engineering blogs of technology leaders such as Uber 
Engineering. These materials provide evidence of the real-
world application of the discussed architectural patterns and 
technologies, illustrating their advantages and disadvantages 
under production conditions.

Thus, the study is based on a multi-level source base, 
where academic works lay the theoretical foundation, 
industry reports provide context and statistical data, and 
technical documentation and industry case studies serve 
to demonstrate the practical applicability and validate the 
proposed solutions.

RESULTS AND DISCUSSION
The transition from a monolithic architecture, where the 
application is a single, indivisible block, to a microservice 
architecture consisting of a set of small, independently 
deployable services is a key strategic decision for scalable 
FinTech projects. However, this transition is not a panacea 
and is associated with a number of trade-offs that must be 
carefully analyzed.

The primary driver for migration is the increase in 
development velocity and the reduction of time-to-market. 
In a microservice architecture, teams can work on individual 
services autonomously, enabling them to develop, test, and 
deploy functionality independently. This eliminates the 
bottlenecks typical of monolithic systems, where a change 
in one module requires rebuilding and full regression testing 
of the entire application. However, this flexibility comes at 
the cost of significantly increased operational complexity. 
Managing dozens or hundreds of services, their network 
interactions, monitoring, and deployment requires a mature 
DevOps culture and a well-developed tooling platform.

This trade-off can be analyzed through the lens of the Team 
Cognitive Load concept described in the Team Topologies 
methodology. Cognitive load is divided into three types: 
intrinsic (the complexity of the business domain itself), 
extraneous (the complexity of tools and processes, such as 
deployment), and germane (related to learning and solving 
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new problems). The goal of effective organization is to 
minimize extraneous load so that engineers can focus on 
intrinsic and germane aspects. A poorly planned transition 
to microservices can catastrophically increase extraneous 
cognitive load: developers must think not only about business 
logic but also about network failures, service discovery, 
distributed transactions, and the challenges of debugging in 
a distributed environment.

Thus, the effectiveness of microservice adoption follows 
a nonlinear relationship. At the initial stage, decomposing 
a monolith increases team productivity by reducing code 
coupling and accelerating deployment cycles. However, 
as the number of services grows without corresponding 
advancements in platform engineering and automation, 
coordination and operational costs begin to rise 
exponentially. This leads to a situation where the benefits of 
team independence are offset by the complexity of managing 

the entire ecosystem, and the overall development speed 
may even decrease compared to a well-structured monolith. 
Success lies not in the mere fact of using microservices, 
but in creating a platform that abstracts and automates 
operational complexity, enabling teams to maintain their 
focus on business objectives [1, 3].

To minimize the risks associated with large-scale refactoring, 
the Strangler Fig Pattern is applied. This approach involves 
a gradual, incremental migration, in which new functionality 
is implemented as microservices operating in parallel 
with the legacy monolith. A special proxy layer (facade) 
intercepts incoming requests and routes them either to the 
old system or to the new service. Over time, more and more 
functionality “strangles” the monolith until it is completely 
decommissioned. This method enables continuous delivery 
of value to users while avoiding the risky “big bang” rewrite 
of the system (fig.1.).

Fig.1. Architectural evolution from monolith to microservices in FinTech [1, 3, 7]

For the purpose of systematizing the identified problems and correlating them with the proposed engineering solutions, 
Table 1 presents an overview of the key challenges arising during the scaling of FinTech platforms, indicating their essence, 
approaches to mitigation, and the technologies used.

Table 1. Engineering challenges and solutions in scaling FinTech systems [1, 8, 10, 11]

Engineering challenge Description of the problem Proposed solution Applied technologies/patterns
Limitations of monolithic 
architecture

High coupling of components, 
inability to scale individual 
modules

Migration to microservices 
with phased transition 
(Strangler Fig Pattern)

Spring Boot, gRPC/REST, API 
Gateway

Growth of operational 
complexity

Need to manage dozens of services, 
monitoring, and deployment

Container orchestration via 
Kubernetes, CI/CD, and IaC

Kubernetes (EKS), Terraform, 
GitLab CI/CD

Peak loads and volatility Sharp traffic spikes during trading 
hours

Auto-scaling of pods and 
nodes

Kubernetes HPA, Cluster 
Autoscaler, AWS ALB

Databases as a 
bottleneck

Increased latency with the growth 
in the number of requests

Horizontal scaling and 
caching

Sharding (range/hash), Redis

CAP theorem conflict Simultaneous requirement 
for strict consistency and high 
availability

CQRS with separation of 
commands and queries

Relational DB (CP) + NoSQL/
Cache (AP)

AI/ML integration High load, low latency 
requirements

HTAP, streaming architecture Apache Kafka, Flink, Kappa 
Architecture

Reliability and fault 
tolerance

Need to prevent cascading 
failures

Fault-tolerance and 
observability patterns

Circuit Breaker, Retry, 
Bulkhead, Prometheus, Jaeger
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Kubernetes today acts as the de facto industry standard for 
orchestrating containerized applications and serves as a 
foundational platform that removes a significant portion of 
the complexities inherent to a microservice architecture. For 
FinTech systems, its properties — ensuring high availability 
and dynamic scalability — are critically important.

High availability is achieved through built-in self-healing 
mechanisms. In the event of a container (Pod) failure, the 
platform automatically restarts it; when a node (virtual 
machine) fails, the Pods running on it are rescheduled to 
healthy cluster nodes. To meet SLA and maximize fault 
tolerance, a typical practice is to deploy a Kubernetes cluster 
(for example, Amazon EKS) across multiple Availability 
Zones (AZ). Such a design guarantees that the failure of an 
entire data center will not lead to service downtime [3, 10].

Financial markets are characterized by high volatility, which 
gives rise to sharp and unpredictable load spikes, particularly 
during peak trading hours. Kubernetes addresses this 
problem through automatic scaling.

Horizontal Pod Autoscaler (HPA) regulates the number of 
service replicas (Pods) in accordance with the current load 
(for example, by CPU utilization). When the resources of 
existing nodes are no longer sufficient, Cluster Autoscaler 
automatically adds new nodes to the cluster. In combination, 
this provides elastic adaptation to real traffic, stable 
performance, and optimization of infrastructure costs. For 
correct routing of traffic to a dynamically changing number 
of Pods, an Application Load Balancer (ALB) integrated with 
an EKS cluster via the AWS Load Balancer Controller is used, 
which is considered a recommended practice.

Integration of Kubernetes with continuous integration and 
delivery (CI/CD) pipelines makes it possible to automate 
service version rollouts, rendering the process fast and 
predictable. At the same time, the infrastructure itself 
(clusters, networks, databases) is managed declaratively 
using Infrastructure as Code (IaC) tools such as Terraform. 
This ensures version control, reproducibility, and 
environment consistency, minimizing risks attributable to 
the human factor.

As the user base grows to millions of active clients, the 
database often becomes the bottleneck of a monolithic 
system. In distributed systems, strategies of horizontal 
scaling are applied to overcome this limitation [1, 9].

Database sharding implies the decomposition of a single 
logical database into many smaller and faster fragments 
(shards) distributed across different servers. This approach 
makes it possible to handle a substantially larger volume 
of data and number of requests than is possible on a single 
server. The key decision is the choice of the sharding key, 
the attribute by which data are distributed among shards. 
An incorrect choice leads to hot spots, when the main load 
is concentrated on one shard and the benefits of scaling are 
neutralized. Various strategies are used, for example, range-

based or hash sharding; the choice is determined by the 
nature of queries to the data.

To achieve ultra-low latency in serving frequently requested 
data, caching in main memory is employed. Redis, being a 
high-performance in-memory data store, is ideally suited 
to this task. In fintech applications, Redis is used to cache 
user portfolio data, current market quotes, user profiles, 
and other entities requiring instantaneous access. This 
markedly reduces the load on the primary database and 
makes it possible to keep response time at the level of tens of 
milliseconds, which is critical for the user experience.

The Command Query Responsibility Segregation (CQRS) 
pattern provides a foundational architectural solution 
for systems with asymmetric read and write loads that 
are characteristic of the fintech domain. Its essence is the 
separation of the data model into two sides: the writing side 
(Command) and the reading side (Query). The write side 
processes operations that change the state of the system 
(create, update, delete) and is optimized for transactional 
integrity and consistency (ACID). The read side, by contrast, 
is aimed exclusively at executing queries and therefore can 
be denormalized, replicated, and materialized in forms 
convenient for fast data presentation without complex joins.

This separation entails an important trade-off — eventual 
consistency. Data from the write side are propagated 
asynchronously to the read side, as a rule through a message 
broker, and therefore for a short period the read model may 
contain slightly stale information. For most user scenarios 
in fintech (for example, viewing the transaction history or 
the current state of a portfolio) a delay of several hundred 
milliseconds is acceptable, whereas the gains in performance 
and scalability are substantial [6, 8].

The approach simultaneously provides a practical resolution 
of the dilemma formulated by the CAP theorem. Financial 
systems require properties that are difficult to combine: 
strong consistency for transactional operations and high 
availability with low latency for reading user data. CQRS 
makes it possible to satisfy these requirements by applying 
different consistency models to different parts of the system: 
the command side is built as a CP system (Consistency/
Partition Tolerance), for example on a relational DBMS that 
ensures the integrity of each transaction, whereas the read 
side is implemented as an AP system (Availability/Partition 
Tolerance) on a replicated NoSQL store or cache, providing 
fast and fault-tolerant access to data for presentation. Thus, 
CQRS does not circumvent the CAP theorem but offers a 
pragmatic method for designing a system under conflicting 
business requirements [2, 7].

It should also be noted that the adoption of artificial 
intelligence has ceased to be optional and has become a key 
factor of competitiveness in the fintech sector. At the same 
time, AI and machine learning models impose qualitatively 
new requirements on the system architecture, as reflected 
in Fig. 2.
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Fig.2. Requirements for the AI model [2, 7, 8]

To ensure resilience and observability, the system must be 
designed with fault tolerance prioritized as a fundamental 
property of the architecture. Within this logic, a set of proven 
patterns is applied. Circuit Breaker prevents cascading 
failures: when a series of errors occurs on a call to an 
external service, the breaker moves to the open state, and 
subsequent requests are rejected immediately without 
imposing load on a potentially faulty component; after an 
interval it transitions to the half-open state for a trial request 
and, if that succeeds, closes again. Retry addresses transient 
failures (for example, network-related): the client repeats 
the failed request a limited number of times, typically with 
an exponential pause between attempts so as not to overload 
the service during the recovery phase. Bulkhead provides 
resource isolation — separate thread or connection pools — 
by service, preventing a situation in which a local failure or 
a load spike exhausts system-wide resources, analogous to 
how watertight compartments on a ship localize a breach.

In distributed landscapes with dozens of microservices, 
a complete enumeration of all failure scenarios is 
fundamentally unattainable; therefore, modern practice 
relies on observability as a property that enables inference 
of internal state and root causes of incidents directly in 
production [3, 4]. For mature SRE teams in the financial 
sector, a key discipline is chaos engineering: the controlled 
introduction of faults into the live environment (for example, 
disabling a service or injecting network latency) to verify 
the effectiveness of fault tolerance mechanisms, monitoring, 
and alerting. This approach makes it possible to identify 
and eliminate architectural vulnerabilities before they 
materialize as real incidents.

CONCLUSION
Scaling a FinTech startup from concept to a platform with 
millions of users does not boil down to simply increasing 
computing resources; it constitutes a multidimensional 
engineering task that requires revisiting the initial 

architectural assumptions. The analysis conducted shows 
that sustainable growth is possible only when moving from 
a monolith to a distributed microservices architecture 
managed by Kubernetes-level cloud orchestrators. Such a 
platform provides the necessary elasticity, fault tolerance, 
and a high degree of automation that meet the industry’s 
strict requirements for availability and performance.

The second key finding concerns specialized data patterns in 
high-load systems. Applying CQRS makes it possible, at the 
architectural level, to separate the contradiction between 
strict transactional consistency and the need for minimal read 
latency, rationally managing the trade-offs predetermined by 
the CAP theorem. In combination with sharding and caching, 
this forms a reliable foundation for a high-performance data 
layer.

Finally, it is shown that artificial intelligence is no longer 
an auxiliary function and is becoming a driver that 
determines architectural requirements. The need for real-
time data processing for AI/ML models forces a rethinking 
of the traditional separation of transactional and analytical 
contours, stimulating the adoption of HTAP approaches and 
streaming architectures.

The practical significance of the proposed framework lies in 
providing technical leaders and architects with a strategic 
roadmap for well-founded decision-making. It systematizes 
the trade-offs between development speed, operational 
complexity, and reliability, enabling the construction of an 
engineering strategy closely aligned with the company’s 
business objectives.

The study validates a practical framework for scaling fintech 
platforms, unifying distributed systems theory with applied 
engineering practice. By systematizing trade-offs and 
integrating Kubernetes, CQRS, sharding, caching, and AI/
ML, the author contributes a roadmap for technical leaders 
scaling platforms from zero to millions of users.

The following directions for further research are identified: 
a deeper study of the impact of serverless architectures on 
the operating models of FinTech companies; an analysis of 
the specific challenges of integrating large language models 
(LLM) into low-latency systems; and a study of the adaptation 
of architectural solutions to the dynamically changing 
regulatory environment for the use of AI in finance.
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