
Page | 94www.ulopenaccess.com

ISSN: 3064-996X | Volume 2, Issue 3

Open Access | PP: 94-99

DOI: https://doi.org/10.70315/uloap.ulete.2025.0203017

Universal Library of Engineering Technology Research Article

Scaling FinTech Startups from Zero to Millions of Users Engineering
Challenges and Solutions
Andrii Humeniuk
Master Degree in Software Engineering, Lead Software Engineer, DASTA Incorporated (“dub”), New York, USA.
ORCID: https://orcid.org/0009-0002-0985-1146

This article systematizes the engineering challenges encountered by the author when scaling fintech systems from inception
to millions of users, including ensuring ultra-low latency, transactional consistency, and high availability. As a solution,
a comprehensive framework is proposed, based on orchestrating containerized applications using Kubernetes, applying
high-performance data handling patterns such as Command Query Responsibility Segregation (CQRS), and analyzing the
architectural implications of integrating artificial intelligence (AI) technologies. The aim of the study is to systematize
engineering challenges related to scaling FinTech platforms and to propose a framework of architectural patterns and
cloud-oriented solutions to overcome them. The scientific novelty of the work lies in synthesizing fundamental distributed
systems theory, modern cloud-native development practices, and forward-looking analysis of AI’s architectural impact.
This synthesis forms a comprehensive guide bridging the gap between academic theory and applied engineering practice,
offering a strategic approach to building next-generation FinTech systems. The methodological basis of this work is founded
on a synthetic approach that combines several research methods to form an analysis of the problem of scaling FinTech
systems. The work demonstrates the practical significance of the proposed model, derived from the author’s applied
experience, for building fault-tolerant and high-performance financial systems that withstand extreme loads and comply
with strict industry requirements.

Keywords: Fintech, Scalability, High-Load Systems, Microservice Architecture, Kubernetes, CQRS, Low Latency, High
Availability, Artificial Intelligence (AI), Risk Management.

Abstract

Citation: Andrii Humeniuk, “Scaling FinTech Startups from Zero to Millions of Users Engineering Challenges and Solutions”,
Universal Library of Engineering Technology, 2025; 2(3): 94-99. DOI: https://doi.org/10.70315/uloap.ulete.2025.0203017.

INTRODUCTION
Financial technologies (FinTech) are transforming the
traditional financial industry by creating new models of
customer interaction and opening access to financial services
for broad user groups. Barroso M., Laborda J. , as a result
of a systematic review, identified 188 concepts grouped into
nine thematic clusters — issues, regulation, cooperation,
and others — highlighting the interdisciplinarity and rapid
development of research in the field of FinTech [1]. Khan R.
A. et al. During the cartographic study, the existing software
development practices in startups were analyzed, noting
that only a small part demonstrate high scientific rigor, while
the majority adapt to limited resources and dynamic market
conditions [7]. At the same time, an analysis of 86 startup
cases showed that the most severe form of technical debt
accumulates in the testing subsystem, significantly hindering
rapid product deployment to the market [5].

A central problem impeding scaling is the architectural legacy
of many startups that begin with a monolithic architecture.

This article builds on the author’s prior research in cloud IT
infrastructures [11] and hybrid financial storage architectures,
extending those foundations into a comprehensive study of
end-to-end scaling challenges in fintech platforms. While a
monolith is effective in the early stages for rapid prototype
development, as load and functional complexity grow, it
becomes a technological barrier. Key bottlenecks include
database contention, where competing operations slow
down the entire system; tight coupling of components, in
which even minor changes require a complete redeployment
of the application, slowing down development cycles; and
the inability to scale individual services independently. If the
load increases on a single functional module, for example,
on the payment processing service, in a monolithic system it
becomes necessary to scale the entire application, leading to
inefficient resource utilization.

The integration of AI/ML for tasks such as Risk Management,
algorithmic trading, fraud detection, and market sentiment
analysis creates new, computationally intensive, and

Page | 95Universal Library of Engineering Technology

Scaling FinTech Startups from Zero to Millions of Users Engineering Challenges and Solutions

resource-demanding workloads. Machine learning models,
particularly in the areas of Reinforcement Learning and
Natural Language Processing, require access to large volumes
of real-time data, placing extreme demands on throughput
and latency in data processing systems. Legacy systems,
designed without consideration for such workloads, are
unable to handle them efficiently.

The aim of the study is to systematize engineering challenges
related to scaling FinTech platforms and to propose a
framework of architectural patterns and cloud-oriented
solutions to overcome them.

The research objectives include: 1) analyzing trade-offs in
transitioning from monolithic to microservice architecture;
2) substantiating the use of Kubernetes as a platform for
orchestration and ensuring high availability; 3) detailed
examination of high-performance data handling patterns
such as sharding and CQRS; 4) analyzing the impact of AI/ML
on architectural requirements; 5) validating the proposed
framework based on a practical case of scaling a trading
platform.

The scientific novelty of the work lies in synthesizing
fundamental distributed systems theory, modern cloud-
native development practices, and forward-looking
analysis of AI’s architectural impact. This synthesis forms
a comprehensive guide bridging the gap between academic
theory and applied engineering practice, offering a strategic
approach to building next-generation FinTech systems.

The author’s hypothesis is that sustainable scaling of
FinTech platforms from zero to millions of users is possible
only through the synergy of transitioning from a monolithic
to a microservices architecture, orchestration via Kubernetes,
the application of data processing patterns (CQRS, sharding,
caching), and architectural solutions that take into account
the real-time and high-availability requirements of AI/ML.

MATERIALS AND METHODS
The methodological basis of this work is founded on a
synthetic approach that combines several research methods
to form an analysis of the problem of scaling FinTech
systems. The core of the study is a systematic literature
review covering peer-reviewed scientific articles from
leading academic databases. This method makes it possible
to establish the theoretical foundation of the work, relying
on well-established concepts and the latest research in the
field of distributed systems and software engineering. In
addition, content analysis is applied to authoritative technical
documents, industry reports, and engineering blogs of
leading technology companies. This approach ensures the
enrichment of the theoretical basis with practical data and
real-world examples of the implementation of the discussed
technologies.

The source base for conducting the study is classified into
three main categories, which ensures the completeness and
reliability of the analysis:

Theoretical foundations: Fundamental works on the design
of distributed systems, such as Designing Data-Intensive
Applications by M. Kleppmann, as well as seminal scientific
articles describing the architecture of such systems as Google
Spanner and Amazon DynamoDB. These sources form the
basis for understanding the key trade-offs in distributed
systems, in particular between consistency, availability, and
partition tolerance, known as the CAP theorem.

Market and industry analysis: Reports and publications from
leading financial and consulting organizations, including
the CFA Institute, World Economic Forum, JPMorgan, and
McKinsey. Data from these sources are used for quantitative
assessment of market trends, justification of the relevance
of the topic, and analysis of the impact of AI on the financial
sector.

Practical implementation patterns: Technical documentation
from leading cloud providers (AWS, GCP) and publications
from engineering blogs of technology leaders such as Uber
Engineering. These materials provide evidence of the real-
world application of the discussed architectural patterns and
technologies, illustrating their advantages and disadvantages
under production conditions.

Thus, the study is based on a multi-level source base,
where academic works lay the theoretical foundation,
industry reports provide context and statistical data, and
technical documentation and industry case studies serve
to demonstrate the practical applicability and validate the
proposed solutions.

RESULTS AND DISCUSSION
The transition from a monolithic architecture, where the
application is a single, indivisible block, to a microservice
architecture consisting of a set of small, independently
deployable services is a key strategic decision for scalable
FinTech projects. However, this transition is not a panacea
and is associated with a number of trade-offs that must be
carefully analyzed.

The primary driver for migration is the increase in
development velocity and the reduction of time-to-market.
In a microservice architecture, teams can work on individual
services autonomously, enabling them to develop, test, and
deploy functionality independently. This eliminates the
bottlenecks typical of monolithic systems, where a change
in one module requires rebuilding and full regression testing
of the entire application. However, this flexibility comes at
the cost of significantly increased operational complexity.
Managing dozens or hundreds of services, their network
interactions, monitoring, and deployment requires a mature
DevOps culture and a well-developed tooling platform.

This trade-off can be analyzed through the lens of the Team
Cognitive Load concept described in the Team Topologies
methodology. Cognitive load is divided into three types:
intrinsic (the complexity of the business domain itself),
extraneous (the complexity of tools and processes, such as
deployment), and germane (related to learning and solving

Page | 96Universal Library of Engineering Technology

Scaling FinTech Startups from Zero to Millions of Users Engineering Challenges and Solutions

new problems). The goal of effective organization is to
minimize extraneous load so that engineers can focus on
intrinsic and germane aspects. A poorly planned transition
to microservices can catastrophically increase extraneous
cognitive load: developers must think not only about business
logic but also about network failures, service discovery,
distributed transactions, and the challenges of debugging in
a distributed environment.

Thus, the effectiveness of microservice adoption follows
a nonlinear relationship. At the initial stage, decomposing
a monolith increases team productivity by reducing code
coupling and accelerating deployment cycles. However,
as the number of services grows without corresponding
advancements in platform engineering and automation,
coordination and operational costs begin to rise
exponentially. This leads to a situation where the benefits of
team independence are offset by the complexity of managing

the entire ecosystem, and the overall development speed
may even decrease compared to a well-structured monolith.
Success lies not in the mere fact of using microservices,
but in creating a platform that abstracts and automates
operational complexity, enabling teams to maintain their
focus on business objectives [1, 3].

To minimize the risks associated with large-scale refactoring,
the Strangler Fig Pattern is applied. This approach involves
a gradual, incremental migration, in which new functionality
is implemented as microservices operating in parallel
with the legacy monolith. A special proxy layer (facade)
intercepts incoming requests and routes them either to the
old system or to the new service. Over time, more and more
functionality “strangles” the monolith until it is completely
decommissioned. This method enables continuous delivery
of value to users while avoiding the risky “big bang” rewrite
of the system (fig.1.).

Fig.1. Architectural evolution from monolith to microservices in FinTech [1, 3, 7]

For the purpose of systematizing the identified problems and correlating them with the proposed engineering solutions,
Table 1 presents an overview of the key challenges arising during the scaling of FinTech platforms, indicating their essence,
approaches to mitigation, and the technologies used.

Table 1. Engineering challenges and solutions in scaling FinTech systems [1, 8, 10, 11]

Engineering challenge Description of the problem Proposed solution Applied technologies/patterns
Limitations of monolithic
architecture

High coupling of components,
inability to scale individual
modules

Migration to microservices
with phased transition
(Strangler Fig Pattern)

Spring Boot, gRPC/REST, API
Gateway

Growth of operational
complexity

Need to manage dozens of services,
monitoring, and deployment

Container orchestration via
Kubernetes, CI/CD, and IaC

Kubernetes (EKS), Terraform,
GitLab CI/CD

Peak loads and volatility Sharp traffic spikes during trading
hours

Auto-scaling of pods and
nodes

Kubernetes HPA, Cluster
Autoscaler, AWS ALB

Databases as a
bottleneck

Increased latency with the growth
in the number of requests

Horizontal scaling and
caching

Sharding (range/hash), Redis

CAP theorem conflict Simultaneous requirement
for strict consistency and high
availability

CQRS with separation of
commands and queries

Relational DB (CP) + NoSQL/
Cache (AP)

AI/ML integration High load, low latency
requirements

HTAP, streaming architecture Apache Kafka, Flink, Kappa
Architecture

Reliability and fault
tolerance

Need to prevent cascading
failures

Fault-tolerance and
observability patterns

Circuit Breaker, Retry,
Bulkhead, Prometheus, Jaeger

Page | 97Universal Library of Engineering Technology

Scaling FinTech Startups from Zero to Millions of Users Engineering Challenges and Solutions

Kubernetes today acts as the de facto industry standard for
orchestrating containerized applications and serves as a
foundational platform that removes a significant portion of
the complexities inherent to a microservice architecture. For
FinTech systems, its properties — ensuring high availability
and dynamic scalability — are critically important.

High availability is achieved through built-in self-healing
mechanisms. In the event of a container (Pod) failure, the
platform automatically restarts it; when a node (virtual
machine) fails, the Pods running on it are rescheduled to
healthy cluster nodes. To meet SLA and maximize fault
tolerance, a typical practice is to deploy a Kubernetes cluster
(for example, Amazon EKS) across multiple Availability
Zones (AZ). Such a design guarantees that the failure of an
entire data center will not lead to service downtime [3, 10].

Financial markets are characterized by high volatility, which
gives rise to sharp and unpredictable load spikes, particularly
during peak trading hours. Kubernetes addresses this
problem through automatic scaling.

Horizontal Pod Autoscaler (HPA) regulates the number of
service replicas (Pods) in accordance with the current load
(for example, by CPU utilization). When the resources of
existing nodes are no longer sufficient, Cluster Autoscaler
automatically adds new nodes to the cluster. In combination,
this provides elastic adaptation to real traffic, stable
performance, and optimization of infrastructure costs. For
correct routing of traffic to a dynamically changing number
of Pods, an Application Load Balancer (ALB) integrated with
an EKS cluster via the AWS Load Balancer Controller is used,
which is considered a recommended practice.

Integration of Kubernetes with continuous integration and
delivery (CI/CD) pipelines makes it possible to automate
service version rollouts, rendering the process fast and
predictable. At the same time, the infrastructure itself
(clusters, networks, databases) is managed declaratively
using Infrastructure as Code (IaC) tools such as Terraform.
This ensures version control, reproducibility, and
environment consistency, minimizing risks attributable to
the human factor.

As the user base grows to millions of active clients, the
database often becomes the bottleneck of a monolithic
system. In distributed systems, strategies of horizontal
scaling are applied to overcome this limitation [1, 9].

Database sharding implies the decomposition of a single
logical database into many smaller and faster fragments
(shards) distributed across different servers. This approach
makes it possible to handle a substantially larger volume
of data and number of requests than is possible on a single
server. The key decision is the choice of the sharding key,
the attribute by which data are distributed among shards.
An incorrect choice leads to hot spots, when the main load
is concentrated on one shard and the benefits of scaling are
neutralized. Various strategies are used, for example, range-

based or hash sharding; the choice is determined by the
nature of queries to the data.

To achieve ultra-low latency in serving frequently requested
data, caching in main memory is employed. Redis, being a
high-performance in-memory data store, is ideally suited
to this task. In fintech applications, Redis is used to cache
user portfolio data, current market quotes, user profiles,
and other entities requiring instantaneous access. This
markedly reduces the load on the primary database and
makes it possible to keep response time at the level of tens of
milliseconds, which is critical for the user experience.

The Command Query Responsibility Segregation (CQRS)
pattern provides a foundational architectural solution
for systems with asymmetric read and write loads that
are characteristic of the fintech domain. Its essence is the
separation of the data model into two sides: the writing side
(Command) and the reading side (Query). The write side
processes operations that change the state of the system
(create, update, delete) and is optimized for transactional
integrity and consistency (ACID). The read side, by contrast,
is aimed exclusively at executing queries and therefore can
be denormalized, replicated, and materialized in forms
convenient for fast data presentation without complex joins.

This separation entails an important trade-off — eventual
consistency. Data from the write side are propagated
asynchronously to the read side, as a rule through a message
broker, and therefore for a short period the read model may
contain slightly stale information. For most user scenarios
in fintech (for example, viewing the transaction history or
the current state of a portfolio) a delay of several hundred
milliseconds is acceptable, whereas the gains in performance
and scalability are substantial [6, 8].

The approach simultaneously provides a practical resolution
of the dilemma formulated by the CAP theorem. Financial
systems require properties that are difficult to combine:
strong consistency for transactional operations and high
availability with low latency for reading user data. CQRS
makes it possible to satisfy these requirements by applying
different consistency models to different parts of the system:
the command side is built as a CP system (Consistency/
Partition Tolerance), for example on a relational DBMS that
ensures the integrity of each transaction, whereas the read
side is implemented as an AP system (Availability/Partition
Tolerance) on a replicated NoSQL store or cache, providing
fast and fault-tolerant access to data for presentation. Thus,
CQRS does not circumvent the CAP theorem but offers a
pragmatic method for designing a system under conflicting
business requirements [2, 7].

It should also be noted that the adoption of artificial
intelligence has ceased to be optional and has become a key
factor of competitiveness in the fintech sector. At the same
time, AI and machine learning models impose qualitatively
new requirements on the system architecture, as reflected
in Fig. 2.

Page | 98Universal Library of Engineering Technology

Scaling FinTech Startups from Zero to Millions of Users Engineering Challenges and Solutions

Fig.2. Requirements for the AI model [2, 7, 8]

To ensure resilience and observability, the system must be
designed with fault tolerance prioritized as a fundamental
property of the architecture. Within this logic, a set of proven
patterns is applied. Circuit Breaker prevents cascading
failures: when a series of errors occurs on a call to an
external service, the breaker moves to the open state, and
subsequent requests are rejected immediately without
imposing load on a potentially faulty component; after an
interval it transitions to the half-open state for a trial request
and, if that succeeds, closes again. Retry addresses transient
failures (for example, network-related): the client repeats
the failed request a limited number of times, typically with
an exponential pause between attempts so as not to overload
the service during the recovery phase. Bulkhead provides
resource isolation — separate thread or connection pools —
by service, preventing a situation in which a local failure or
a load spike exhausts system-wide resources, analogous to
how watertight compartments on a ship localize a breach.

In distributed landscapes with dozens of microservices,
a complete enumeration of all failure scenarios is
fundamentally unattainable; therefore, modern practice
relies on observability as a property that enables inference
of internal state and root causes of incidents directly in
production [3, 4]. For mature SRE teams in the financial
sector, a key discipline is chaos engineering: the controlled
introduction of faults into the live environment (for example,
disabling a service or injecting network latency) to verify
the effectiveness of fault tolerance mechanisms, monitoring,
and alerting. This approach makes it possible to identify
and eliminate architectural vulnerabilities before they
materialize as real incidents.

CONCLUSION
Scaling a FinTech startup from concept to a platform with
millions of users does not boil down to simply increasing
computing resources; it constitutes a multidimensional
engineering task that requires revisiting the initial

architectural assumptions. The analysis conducted shows
that sustainable growth is possible only when moving from
a monolith to a distributed microservices architecture
managed by Kubernetes-level cloud orchestrators. Such a
platform provides the necessary elasticity, fault tolerance,
and a high degree of automation that meet the industry’s
strict requirements for availability and performance.

The second key finding concerns specialized data patterns in
high-load systems. Applying CQRS makes it possible, at the
architectural level, to separate the contradiction between
strict transactional consistency and the need for minimal read
latency, rationally managing the trade-offs predetermined by
the CAP theorem. In combination with sharding and caching,
this forms a reliable foundation for a high-performance data
layer.

Finally, it is shown that artificial intelligence is no longer
an auxiliary function and is becoming a driver that
determines architectural requirements. The need for real-
time data processing for AI/ML models forces a rethinking
of the traditional separation of transactional and analytical
contours, stimulating the adoption of HTAP approaches and
streaming architectures.

The practical significance of the proposed framework lies in
providing technical leaders and architects with a strategic
roadmap for well-founded decision-making. It systematizes
the trade-offs between development speed, operational
complexity, and reliability, enabling the construction of an
engineering strategy closely aligned with the company’s
business objectives.

The study validates a practical framework for scaling fintech
platforms, unifying distributed systems theory with applied
engineering practice. By systematizing trade-offs and
integrating Kubernetes, CQRS, sharding, caching, and AI/
ML, the author contributes a roadmap for technical leaders
scaling platforms from zero to millions of users.

The following directions for further research are identified:
a deeper study of the impact of serverless architectures on
the operating models of FinTech companies; an analysis of
the specific challenges of integrating large language models
(LLM) into low-latency systems; and a study of the adaptation
of architectural solutions to the dynamically changing
regulatory environment for the use of AI in finance.

REFERENCES
Barroso, M., & Laborda, J. (2022). Digital transformation 1.	
and the emergence of the fintech sector: Systematic
literature review. Digital Business, 2(2), 100028..
https://doi.org/10.1016/j.digbus.2022.100028

Vijayagopal, P., Jain, B., & Ayinippully Viswanathan, S. 2.	
(2024). Regulations and Fintech: A Comparative Study
of the Developed and Developing Countries. Journal of
Risk and Financial Management, 17(8), 324. https://doi.
org/10.3390/jrfm17080324

Page | 99Universal Library of Engineering Technology

Scaling FinTech Startups from Zero to Millions of Users Engineering Challenges and Solutions

Kumar, G. (2025). Architecting scalable and resilient 3.	
fintech platforms with AI/ML integration. Journal of
Innovative Science and Research Technology, 10(4), 3073-
3084. https://doi.org/10.38124/ijisrt/25apr2359

Lange, F., et al. (2023). Demystifying massive and rapid 4.	
business scaling—An explorative study on driving
factors in digital start-ups. Technological Forecasting and
Social Change, 196, 122841. https://doi.org/10.1016/j.
techfore.2023.122841

Abrahamsson, V., & Holmqvist, V. (2023). Technical debt 5.	
in Swedish tech startups: Uncovering its emergence, and
management processes, 34-60 .

Wetzel, T., & Eiche, J. (2024). Challenges of start-ups—6.	
An analysis of individually tailored recommendations
based on the development phases, branches, business
models and founding teams. Open Journal of Business
and Management, 12(3), 1556–1585. https://doi.
org/10.4236/ojbm.2024.123084

Khan, R. A., et al. (2021). Systematic mapping study on 7.	
security approaches in secure software engineering.
IEEE Access, 9, 19139–19160. https://doi.org/10.1109/
ACCESS.2021.3052311

Tamraparani, V. (2024). AI and Gen AI application for 8.	
enterprise modernization from complex monolithic
to distributed computing in fintech and healthtech
organizations. Journal of Artificial Intelligence, Machine
Learning and Data Science, 2(2), 1611-1617.

Bolgov, S. (2024). Creating infrastructure for scalable 9.	
fintech solutions: Technical and organizational aspects.
ISJ Theoretical & Applied Science, 12(140), 354–358

Alt, R., Fridgen, G., & Chang, Y. (2024). The future 10.	
of fintech—Towards ubiquitous financial services.
Electronic Markets, 34,3.

Telenik S.T. et al. Development and research of 11.	
models, methods and technologies of planning,
programming and management cloudy IT-
infrastructures. Retivered from:https://nrat.ukrintei.
ua/en/searchdoc/0216U005227/ (date of access:
10.07.2025)

Copyright: © 2025 The Author(s). This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

