
Page | 8www.ulopenaccess.com

ISSN: 3064-996X | Volume 2, Issue 4

Open Access | PP: 08-13

DOI: https://doi.org/10.70315/uloap.ulete.2025.0204002

Universal Library of Engineering Technology Research Article

Design and Implementation of a YAML-Driven Metrics Layer Framework 
for Standardized KPI Delivery in Microservices
Abhishek Anand
Data Engineer II - Analytics, Grubhub Holdings Inc.New York City, USA.

The article reviews a declarative YAML layer framework implemented to standardize the delivery of key performance 
indicators within microservice architectures. Justification of work is laid down in the context of a highly rapid shift from 
monolithic systems to microservices, the widespread adoption of Kubernetes as an orchestrator, and increasing volumes of 
system telemetry, with fundamental challenges in unifying all these metrics and delivering them as understandable business 
KPIs. In the absence of a unified semantic vocabulary, the calculation of indicators across different services is performed 
using disparate filters, which prolongs incident-analysis processes and may result in financial losses reaching millions of 
dollars per hour. The objective of the study is to externalize the descriptions of source metrics and business formulas from 
microservice code into a declarative layer, formatted as YAML configurations, and to integrate this layer into a GitOps 
pipeline to ensure versioning, automatic propagation, and auditing of changes without requiring service restarts. The 
solution proposed here merges three logical entities: a light-sidecar adapter for Prometheus label normalization and data 
transfer over the Remote Write 2.0 specification; centralized YAML storage, registered and semantically version-controlled 
with pull requests; and a proxy processor that compiles declarative formulas into recording rules, performing calculation 
execution as well as aggregating series for publishing. Therefore, it is possible to say that a declarative framework reduces 
the time required to deploy a new metric to production from days to hours, minimizes the share of duplicate KPIs, improves 
SLA compliance regarding calculation latency and telemetry collection overhead, and reduces the need for code-based 
instrumentation. YAML specifications capture REQUEST (why/what) and encode ACCUT guardrails (what ‘good’ means) 
for KPI delivery. The scalable architecture, which separates hot and cold data-processing streams, employs semantic 
versioning and utilizes an isolated formula interpreter to ensure reliability, stack-storage independence, and compatibility 
with existing monitoring and tracing systems. This article will be valuable to distributed‑systems architects, DevOps 
engineers, and observability researchers for designing manageable and scalable KPI‑standardization platforms.

Keywords: YAML, Microservices, KPI, Declarative Framework, GitOps, Prometheus, Observability, Metrics, CI/CD, Semantic 
Versioning.

Abstract

Citation: Abhishek Anand, “Design and Implementation of a YAML-Driven Metrics Layer Framework for Standardized 
KPI Delivery in Microservices”, Universal Library of Engineering Technology, 2025; 2(4): 08-13. DOI: https://doi.
org/10.70315/uloap.ulete.2025.0204002.

Introduction
The transition from monolithic systems to microservices 
began at major Internet companies in the early 2010s, 
when Netflix (a global video streaming platform), Amazon 
(an e-commerce and cloud computing giant), and eBay (an 
online auction and marketplace service) demonstrated 
that dividing a domain into small independent services 
accelerates feature releases and enhances fault tolerance. 
The standardization of containers, with the release of 
Docker 1.0 (a platform for building, packaging, and running 
applications inside lightweight, portable containers), 
followed by the emergence of Kubernetes (an open-source 
system for automating container deployment, scaling, 
and management), cemented this approach. By the end 

of 2023, 66% of organizations were running Kubernetes 
in production, while another 18% were at the pilot stage, 
meaning that 84% of the market had effectively transitioned 
to cloud-native infrastructure [1]. Concurrently, a culture of 
system metrics emerged: Prometheus became the de facto 
standard for data collection, OpenTelemetry unified tracing, 
and business teams gained access to unprecedented volumes 
of telemetry that must be transformed into intelligible KPIs. 
Raw telemetry is published as Bronze, normalized and label-
standardized to Silver, and business KPIs are materialized as 
Gold—keeping the metrics layer consistent with Medallion 
warehouse practice [9].

The increase in service count has sharply raised observability 
complexity. A typical product operates hundreds of 



Page | 9Universal Library of Engineering Technology

Design and Implementation of a YAML-Driven Metrics Layer Framework for Standardized 
KPI Delivery in Microservices

containers, each publishing dozens of metrics with varying 
naming schemes and labels. In the CNCF 2023 survey, over 
90% of respondents reported using containers, with security 
being the top concern for 40% of companies, and monitoring 
and observability identified as rapidly growing challenges 
due to the scale of data [1]. In practice, this results in a single 
KPI being computed differently across services using varying 
filters, leading to divergent metrics and incident root-cause 
analyses that can take hours or even days.

An optimal response to these challenges is to externalize 
metric descriptions and business formulas from service code 
into a declarative layer, represented by YAML files, which 
are version-controlled alongside the infrastructure. The 
popularization of GitOps has reinforced this idea: according 
to a 2025 survey, 77% of organizations employ GitOps 
methodology in some form [2]. When KPIs are expressed 
in YAML and undergo the familiar pull‑request process, the 
team obtains a unified metric vocabulary, a rigorous change 
history, and automated configuration propagation without 
repeated service deployments. This approach eliminates 
duplication, simplifies auditing, and shortens the time to 
introduce a new metric to production from days to hours 
—an outcome unattainable when metrics are calculated 
imperatively within each microservice.

Materials and Methodology
The study is based on the analysis of eight key sources, 
encompassing both quantitative data on microservice usage 
practices and technical specifications, as well as empirical 
evaluations. As starting points, the CNCF Annual Survey 2023 
on Kubernetes prevalence and observability challenges [1], 
the Cloud Native Now 2025 survey on GitOps adoption rates 
[2], the New Relic report on IT‑system downtime financial 
costs [3], and the DevOps.com 2024 survey on time spent 
on incident resolution [4] were employed. The empirical 
study by Hammad et al. provided data on tracing overhead 
in containerized code [5]. At the same time, the Grafana 
Labs Observability Survey 2024 facilitated an assessment 
of monitoring tool diversity and associated costs [6]. 
To understand GitOps practices in metric configuration 
management, the CNCF GitOps Microsurvey was consulted 
[7], and technical requirements for telemetry transmission 
were studied based on the Prometheus Remote Write 2.0 
specification [8].

Methodologically, the work combines several approaches: 
comparative analysis of metric‑collection and unification 
practices in microservice architectures using aggregated 
survey and report data [1, 2, 6]; systematic review of 
technical documentation and specifications to identify 
requirements for declarative metric description [8]; and 
performance analysis of tracing and monitoring tools based 
on empirical measurements [5]. To structure architectural 
requirements, a content analysis of reports on business costs 
of downtime and observability challenges was conducted [3, 
4], which facilitated the formalization of target metrics and 
SLAs. Finally, the synthesis of GitOps implementation data 

[7] informed the design of the CI/CD process for the YAML 
registry. As a result, the methodology integrates literature 
review, specification analysis, comparative practice analysis, 
and case‑study content analysis to substantiate the choice of 
a declarative YAML layer in the proposed framework. Schema 
fields are selected to satisfy ACCUT (accuracy/correctness 
checks, completeness constraints, uniqueness keys, and 
timeliness SLAs). KPI entities are aligned with Kimball’s 
4-step modeling (process, grain, dimensions, facts) to keep 
business vocabulary stable [9].

Results and Discussion
For business, key metrics are considered part of financial 
obligations: a survey of 1 700 companies showed that 
highly critical outages last on average 77 hours per year, 
and each lost hour of iteration costs up to USD 1.9 million 
[3], engineers spend nearly one third of their workweek—
approximately 30% of their time—on incident remediation 
[4]. Conducting root cause analysis (RCA) and post‑incident 
reviews (37%), monitoring DevOps Research and Assessment 
(DORA) metrics (34%), monitoring golden signals (33%), and 
tracking, reporting, and influencing the mean time required 
to detect and resolve outages (33%) are the top observability 
best practices being followed, as shown in Figure 1. 

Fig. 1. Observability Practices Adoption and Impact [4]

Under these conditions, product owners demand that KPI 
data be updated with one-minute latency, support audit and 
versioning, and comply with the SLA. Discrepant KPIs arise 
when REQUEST is implicit. ‘Reason/Entities/Units/Events’ 
are externalized into YAML so that formulas are composed 
from the same contract across services [9]. Meanwhile, 
observability teams must provide a unified semantic metric 
vocabulary independent of the service implementation 
language, with the ability to trace each calculation formula 
back to its source metrics.

The operational environment imposes strict constraints: over 
80% of organizations already run Kubernetes in production, 
with another 13% at the pilot stage, so most services 
operate in short-lived containers, scale horizontally, and 
communicate via a service mesh [2]. High label cardinality, 
regulatory restrictions on cross‑region data transfer, and 
the need to process telemetry from a polyglot stack without 



Page | 10Universal Library of Engineering Technology

Design and Implementation of a YAML-Driven Metrics Layer Framework for Standardized 
KPI Delivery in Microservices

modifying business code further complicate observability 
load. Moreover, 45% of companies already use more than 
five monitoring tools, creating significant licensing and 
integration costs, and making it critical that a new platform 
operate on top of the existing landscape without an agent 
zoo [4].

Success criteria are quantified: the mean time to detect and 
resolve incidents must decrease, the proportion of duplicate 
KPIs must decline, and the time to deploy a new metric to 
production must not exceed two hours from the merge 
of its YAML configuration. The platform must ensure that 
aggregated KPI query latency is below a specified number of 
milliseconds at a given percentile, keep telemetry collection 
overhead within each node’s CPU budget, and auto-
scale under load spikes without data loss. Meeting these 
conditions will demonstrate that the declarative layer truly 
addresses business objectives, fits technological constraints, 
and delivers measurable operational benefit.

In-service telemetry remains popular due to its ease of 
adoption; however, studies reveal its systemic costs. In a 
comparison of seventy APIs across two clouds, full-code 
tracing coverage reduced aggregate throughput by an 
average of 8.4%, with losses of up to 30% in some cases [5]. 
These percentages translate into direct costs when dozens 
of microservices operate under peak load; additionally, each 
team describes metrics differently, leading to discrepancies 
at the naming and labeling level. Any change to a business 
formula necessitates a new deployment, which slows KPI 
evolution and constrains analysts.

Second‑generation observability platforms promise to 
relieve integration pain by offering a single pane of glass, 
yet in practice they exacerbate tooling fragmentation: the 
Grafana Observability Survey 2024 found that 70% of teams 
use at least four tools for metrics, logs, and tracing, and 61% 
of participants cite unpredictable costs and excessive bills as 
the primary operational challenge, as shown in Figure 2 [6]. 
RIPC guides platform design: Reduce duplicate collectors, 
pre-Index label spaces, Partition writes by KPI ID/tenant, 
Cache compiled rules [9].

Fig. 2. Quantitative Assessment of Observability Tool 
Adoption, Diversity, and Cost Implications [6]

Each additional aggregator introduces its format, cardinality 
quotas, and pricing model, so computing a unified KPI often 
requires chains of import–export between systems, leading 
to version conflicts among libraries and exporters.

A declarative YAML layer eliminates both problem classes 
by externalizing KPI descriptions into a version‑controlled 
repository and integrating them into a GitOps pipeline. A 
survey [7] revealed that 60% of respondents have employed 
GitOps for over a year, while another 31% started using it 
within the past year. Additionally, 67% of the remaining 
respondents plan to adopt it within the next year. Most 
organizations rely on one or two cloud platforms or a hybrid 
model, whereas purely on‑premises or complex multi‑cloud 
configurations are notably less common, as illustrated in 
Figure 3.

Fig. 3. Distribution of Organizational Infrastructure 
Platforms [7]

Thus, storing metrics in YAML naturally aligns with the 
established culture of declarative infrastructure: a change 
to a formula is recorded via a pull request, automatically 
subjected to tests and migrations, and then propagated 
to the proxy layer without requiring service restarts. This 
eliminates duplication, reduces operational expenditure, 
and limits the latency for deploying a new metric to the time 
needed for review rather than a complete deployment cycle, 
thereby directly supporting the defined success criteria. 
When a rule fails validation or exceeds cardinality budgets, 
the rule version is quarantined and the last good snapshot 
continues to be served [9].

The basic topology is built around three logical nodes: 
a lightweight adapter deployed as a sidecar to each 
microservice, a YAML registry that stores KPI configurations 
in Git, and a proxy processor responsible for computing and 
publishing aggregated series. Services continue to export 
telemetry in Prometheus format. The adapter normalizes 
labels, applies cardinality limiters, and, using the Remote 
Write 2.0 protocol, forwards samples losslessly to the receiver. 
The specification mandates control of protocol headers 
and acknowledgments, thus eliminating double reads and 
enhancing transmission reliability [8]. A Token Bucket is 



Page | 11Universal Library of Engineering Technology

Design and Implementation of a YAML-Driven Metrics Layer Framework for Standardized 
KPI Delivery in Microservices

applied per tenant at ingest; on overload/429s, limits are 
halved via AIMD and then slowly increased on recovery [9]. 
The YAML registry is hosted on a Git platform, where each 
modification undergoes the standard pull‑request process 
and, thanks to the GitOps pipeline, automatically triggers a 
configuration update in the proxy.

Data flows along two independent channels. The hot path 
runs from adapters to the metric collector via Remote 
Write; the collector stores raw series in a scalable TSDB and 
immediately publishes them for PromQL queries. In parallel, 
upon startup, the proxy loads a snapshot of all YAML files, 
compiles formulas into recording rules, and, on schedule, 
recalculates KPIs—applying the same labels as the source 
metrics — so that consumers can switch to unified series 
without reworking their dashboards. The cold path for 
configuration changes originates from Git. After a merge, 
a bot performs schema validation and test computations 
on sample data, and upon success, delivers the new YAML 
package to the proxy, thereby preserving continuous service 
for historical version queries.

Scaling is achieved through strict node independence: 
sidecars scale horizontally in line with service replicas, while 
Kubernetes HPA manages proxies and collectors. Within 
the proxy, computation tasks are sharded by KPI identifier, 
allowing for linear throughput increases without requiring 
state coordination; an intermediate results cache reduces 
TSDB load during read spikes. Circuit-breaker policies 
define acceptable degradation windows: upon timeout, the 
proxy returns the last valid snapshot, and the adapter enters 
a drop-labels mode, discarding low-priority labels to cap 
cardinality. As a result, the system endures horizontal cluster 
expansion without component refactoring and continues to 
deliver KPIs.

The schema description begins with a minimal yet 
comprehensive file structure reflecting the domain entity 
of the key indicator. At the top level, it specifies a stable 
metric identifier, a version field, a list of source series, and a 
section for the calculation formula. For every KPI, the grain 
(e.g., service, region, minute) is declared and dimension 
keys are referenced; this STAR-compatible contract avoids 
silent semantic drift [9]. Each source metric records its 
name, a mandatory set of labels, and an aggregation type, 
guaranteeing result reproducibility regardless of the 
producing service’s language or environment. The formula 
is written in a compact expression syntax closely resembling 
Python, enabling an analyst with basic arithmetic knowledge 
to define complex indicators without modifying microservice 
code.

The schema defines several source categories. The most 
common is Prometheus telemetry delivered via Remote 
Write. The second category comprises high-level series 
that are already aggregated in the time-series database 
and require only further normalization. The third includes 
events from logging systems, such as counters of successful 

and failed transactions, which the proxy dynamically 
converts into time series. This source catalog spares teams 
from formatting data on the service side and simultaneously 
allows the proxy to optimize the pipeline for each load type.

Formula and aggregation descriptions follow a declarative 
approach: the KPI author operates on a list of reference 
tokens, such as metric0, metric1, and so on, while the 
compiler substitutes actual queries. Supported constructs 
include arithmetic, conditional expressions, and aggregate 
functions—such as total count and moving‑window 
average. The constrained feature set prevents arbitrary code 
execution, thereby reducing the attack surface.

Versioning adheres to a semantic scheme: changes to 
source‑metric descriptions increment the patch number, 
recomputation over historical intervals increments the minor 
number, and incompatible changes to aggregation type or 
measurement unit increment the major number. This rule 
simplifies automatic selection of the correct formula version 
when reading historical data, since the proxy always knows 
which parameters were valid at write time.

Processing begins at the validator stage, which checks 
JSON‑schema compliance, tests the expression on a controlled 
value set, and rejects configurations that yield indivisible 
values or exceed allowable ranges. Static analysis further 
detects dead code branches and cyclic metric references. Next, 
the compiler transforms the declaration into PromQL or into 
an SQL dialect when the storage supports aggregated‑table 
queries. The output is stored in a recording‑rules catalog, 
which the executor polls at intervals defined by the update 
policy.

The executor performs computations, writes results back 
to the same time‑series database, and stores intermediate 
values in a local cache. ACCUT telemetry (accuracy deltas, 
staleness) and stage-level metrics (latency p95) are emitted 
for each compute run, enabling rapid RCA similar to Spark 
UI heuristics [9]. The cache enables dashboards and alerts to 
function even during brief storage outages and dramatically 
reduces load when multiple queries hit the same KPI. 
Configuration reloads occur without service interruption. 
Git triggers a webhook, which delivers the update to the 
proxy. The proxy then loads the new file package, validates 
it locally, and atomically updates the rule-version reference. 
Consequently, consumers receive updated metrics within 
seconds, and computations initiated under the previous 
schema complete correctly, preventing partial data loss 
and ensuring SLA‑level reliability. Bronze/Silver/Gold are 
versioned in lockstep with KPI YAML; rollbacks swap only 
the rule-version pointer, keeping raw series intact [9].

The parser is implemented using the Pydantic library, which 
converts the loaded YAML into strongly typed objects, 
verifying required fields, value ranges, and label‑list integrity 
before the configuration enters the execution subsystem. 
This approach frees developers from manual validation and 
provides clear, human‑readable error reports, simplifying 



Page | 12Universal Library of Engineering Technology

Design and Implementation of a YAML-Driven Metrics Layer Framework for Standardized 
KPI Delivery in Microservices

the repository review process. Upon successful validation, 
the object model is passed to the query generator. For each 
source metric, it matches the storage backend, applies 
filters and the aggregation type, and then constructs an 
expression in PromQL or the SQL dialect, as determined by 
the connected storage. As a result, analysts obtain a uniform 
query signature irrespective of the underlying time‑series 
storage technology.

For reliable and secure formula evaluation, an isolated 
interpreter is employed. It is instantiated with an empty set of 
built‑in functions, permitting only the arithmetic operations 
and aggregates required for business indicators. The code 
of each formula is compiled into an abstract syntax tree and 
then executed within this environment, where input/output 
operations and network access are unavailable, thereby 
virtually eliminating abuse. If computation completes 
successfully, the result is immediately sent to the cache, 
from which dashboards and alerting systems retrieve it. 
For external clients, a thin REST and gRPC layer has been 
developed, offering a list of available KPIs, their descriptions, 
and metadata, as well as serving precomputed series in 
formats compatible with popular visualization tools. This 
abstraction boundary conceals the internal pipeline details, 
enabling teams to adopt new storage backends or optimize 
algorithms without modifying client code.

The configuration delivery process to production is built 
around the familiar Git flow. Each change begins on a 
separate branch, undergoes automated review by code 
owners, and is then merged into the main development line 
via a pull request. Post‑merge, a trigger launches a pipeline 
that repeats validation, runs a suite of tests on synthetic data, 
and deploys the proxy container in an isolated namespace, 
where analysts can verify how the new metric will appear 
on real dashboards. If the outcome satisfies stakeholders, 
the image is promoted to the production cluster. Should an 
error be discovered, reverting the last commit suffices to 
restore the previous rule set via the atomic configuration-
switch mechanism. This cycle guarantees that changes never 
disrupt observability service operation, and the delivery 
time for new metrics is limited to the duration of review and 
automated tests.

Thus, the adoption of a declarative metrics layer based on YAML 
centralizes KPI descriptions, ensures uniform computation, 
and fully audits changes with minimal temporal overhead, 
while preserving scaling flexibility and independence 
from particular microservice implementations, reducing 
operational costs and the risk of metric discrepancies; all of 
this integrates seamlessly into existing GitOps processes and 
the established culture of cloud infrastructure. 

Conclusion
The new setup showcases nice standardization and brings 
together key indicator calculations in lively small-service 
scenes. Moving metric details and business formulas out of 

service code into GitOps version control makes configuration 
management more centralized, provides a clear change 
history, and enables rule-based automatic deployment of 
new rules without requiring component restarts. This setup 
eliminates busy work, reduces metric drift, and reduces the 
time it takes to push a new metric to production from days 
to just hours.

The technical implementation, comprising three logical 
nodes—a lightweight sidecar adapter, a YAML configuration 
registry, and a proxy processor—has proven to be scalable 
and fault-tolerant. The hot telemetry stream ensures 
immediate availability of raw data in the TSDB, while the 
proxy layer periodically recalculates aggregated KPIs, 
preserving a unified semantics for labels and metrics. 
Caching mechanisms and circuit‑breaker policies guarantee 
SLA compliance under peak loads, and the isolated formula 
interpreter reduces the attack surface and prevents arbitrary 
code execution.

Reduced time to detect and eliminate incidents due to unified 
metric vocabulary and fast root cause analysis;; percentage 
of duplicate KPIs reduced due to a single source of truth;; 
time to deploy a new metric to production does not exceed 
the established two-hour SLA has been the key quantitative 
success criteria. No additional agents are required, and 
compatibility with existing monitoring and tracing tools 
supports the adoption of the framework without disrupting 
the current landscape.

Therefore, the proposed YAML‑oriented approach provides 
a resilient, flexible, and manageable platform for delivering 
standardized KPIs in microservice architectures, aligns 
with established GitOps workflows and cloud infrastructure 
practices, and lowers operational costs while enhancing the 
reliability of business metrics.

References
CNCF, “CNCF Annual Survey 2023,” 1.	 CNCF, Apr. 09, 2024. 
https://www.cncf.io/reports/cncf-annual-survey-
2023/ (accessed Jun. 26, 2025).

M. Vizard, “CNCF Survey Surfaces Steady Pace of Increased 2.	
Cloud-Native Technology Adoption,” Cloud Native Now, 
Apr. 04, 2025. https://cloudnativenow.com/topics/
cloudnativedevelopment/cncf-survey-surfaces-steady-
pace-of-increased-cloud-native-technology-adoption/ 
(accessed Jun. 27, 2025).

New Relic, “New Relic Study Reveals IT Outages Cost 3.	
Businesses Up to $1.9 M Per Hour,” New Relic, 2024. 
https://newrelic.com/press-release/20241022 
(accessed Jun. 28, 2025).

M. Vizard, “Survey: IT Teams Spend About a Third of 4.	
Time Responding to Disruptions,” DevOps, Nov. 2024. 
https://devops.com/survey-it-teams-spend-about-a-
third-of-time-responding-to-disruptions/ (accessed Jun. 
29, 2025).



Page | 13Universal Library of Engineering Technology

Design and Implementation of a YAML-Driven Metrics Layer Framework for Standardized 
KPI Delivery in Microservices

Y. Hammad, A. A.-S. Ahmad, and P. Andras, “An 5.	
Empirical Study on the Performance Overhead of Code 
Instrumentation in Containerised Microservices,” 
Journal of Systems and Software, vol. 230, pp. 112573–
112573, Jul. 2025, doi: https://doi.org/10.1016/j.
jss.2025.112573.

Grafana Labs, “Observability Survey Report 2024 - key 6.	
findings,” Grafana Labs, 2024. https://grafana.com/
observability-survey/2024/ (accessed Jul. 01, 2025).

G. Microsurvey, “Learning on the job as GitOps goes 7.	
mainstream,” CNCF. https://www.cncf.io/wp-content/
uploads/2023/11/CNCF_GitOps-Microsurvey_Final.pdf 
(accessed Jul. 02, 2025).

Prometheus, “Prometheus Remote-Write 2.0 8.	
specification,” Prometheus, 2024. https://prometheus.
io/docs/specs/prw/remote_write_spec_2_0/ (accessed 
Jul. 03, 2025).

A. Anand, 9.	 SELECT * FROM fact_DE. Independently 
published, 2025, p. 304. Accessed: Oct. 18, 2025. [Online]. 
Available: https://a.co/d/4qMytUP

Copyright: © 2025 The Author(s). This is an open access article distributed under the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


