Universal Library of Engineering Technology Research Article

ISSN: 3064-996X | Volume 2, Issue 4
Open Access | PP: 08-13
DOI: https://doi.org/10.70315 /uloap.ulete.2025.0204002

Universal Library Open Access Publications LLC

Design and Implementation of a YAML-Driven Metrics Layer Framework

for Standardized KPI Delivery in Microservices

Abhishek Anand
Data Engineer II - Analytics, Grubhub Holdings Inc.New York City, USA.

The article reviews a declarative YAML layer framework implemented to standardize the delivery of key performance
indicators within microservice architectures. Justification of work is laid down in the context of a highly rapid shift from
monolithic systems to microservices, the widespread adoption of Kubernetes as an orchestrator, and increasing volumes of
system telemetry, with fundamental challenges in unifying all these metrics and delivering them as understandable business
KPIs. In the absence of a unified semantic vocabulary, the calculation of indicators across different services is performed
using disparate filters, which prolongs incident-analysis processes and may result in financial losses reaching millions of
dollars per hour. The objective of the study is to externalize the descriptions of source metrics and business formulas from
microservice code into a declarative layer, formatted as YAML configurations, and to integrate this layer into a GitOps
pipeline to ensure versioning, automatic propagation, and auditing of changes without requiring service restarts. The
solution proposed here merges three logical entities: a light-sidecar adapter for Prometheus label normalization and data
transfer over the Remote Write 2.0 specification; centralized YAML storage, registered and semantically version-controlled
with pull requests; and a proxy processor that compiles declarative formulas into recording rules, performing calculation
execution as well as aggregating series for publishing. Therefore, it is possible to say that a declarative framework reduces
the time required to deploy a new metric to production from days to hours, minimizes the share of duplicate KPIs, improves
SLA compliance regarding calculation latency and telemetry collection overhead, and reduces the need for code-based
instrumentation. YAML specifications capture REQUEST (why/what) and encode ACCUT guardrails (what ‘good’ means)
for KPI delivery. The scalable architecture, which separates hot and cold data-processing streams, employs semantic
versioning and utilizes an isolated formula interpreter to ensure reliability, stack-storage independence, and compatibility
with existing monitoring and tracing systems. This article will be valuable to distributed-systems architects, DevOps
engineers, and observability researchers for designing manageable and scalable KPI-standardization platforms.

Keywords: YAML, Microservices, KPI, Declarative Framework, GitOps, Prometheus, Observability, Metrics, Cl/CD, Semantic
Versioning.

INTRODUCTION of 2023, 66% of organizations were running Kubernetes
in production, while another 18% were at the pilot stage,
meaning that 84% of the market had effectively transitioned
to cloud-native infrastructure [1]. Concurrently, a culture of
system metrics emerged: Prometheus became the de facto
standard for data collection, OpenTelemetry unified tracing,
and business teams gained access to unprecedented volumes
of telemetry that must be transformed into intelligible KPIs.
Raw telemetry is published as Bronze, normalized and label-
standardized to Silver, and business KPIs are materialized as
Gold—keeping the metrics layer consistent with Medallion
warehouse practice [9].

The transition from monolithic systems to microservices
began at major Internet companies in the early 2010s,
when Netflix (a global video streaming platform), Amazon
(an e-commerce and cloud computing giant), and eBay (an
online auction and marketplace service) demonstrated
that dividing a domain into small independent services
accelerates feature releases and enhances fault tolerance.
The standardization of containers, with the release of
Docker 1.0 (a platform for building, packaging, and running
applications inside lightweight, portable containers),
followed by the emergence of Kubernetes (an open-source
system for automating container deployment, scaling, The increase in service count has sharply raised observability
and management), cemented this approach. By the end complexity. A typical product operates hundreds of

Citation: Abhishek Anand, “Design and Implementation of a YAML-Driven Metrics Layer Framework for Standardized

KPI Delivery in Microservices”, Universal Library of Engineering Technology, 2025; 2(4): 08-13. DOI: https://doi.
org/10.70315 /uloap.ulete.2025.0204002.

www.ulopenaccess.com Page | 8

Design and Implementation of a YAML-Driven Metrics Layer Framework for Standardized

KPI Delivery in Microservices

containers, each publishing dozens of metrics with varying
naming schemes and labels. In the CNCF 2023 survey, over
90% of respondents reported using containers, with security
being the top concern for 40% of companies, and monitoring
and observability identified as rapidly growing challenges
due to the scale of data [1]. In practice, this results in a single
KPI being computed differently across services using varying
filters, leading to divergent metrics and incident root-cause
analyses that can take hours or even days.

An optimal response to these challenges is to externalize
metric descriptions and business formulas from service code
into a declarative layer, represented by YAML files, which
are version-controlled alongside the infrastructure. The
popularization of GitOps has reinforced this idea: according
to a 2025 survey, 77% of organizations employ GitOps
methodology in some form [2]. When KPIs are expressed
in YAML and undergo the familiar pull-request process, the
team obtains a unified metric vocabulary, a rigorous change
history, and automated configuration propagation without
repeated service deployments. This approach eliminates
duplication, simplifies auditing, and shortens the time to
introduce a new metric to production from days to hours
—an outcome unattainable when metrics are calculated
imperatively within each microservice.

MATERIALS AND METHODOLOGY

The study is based on the analysis of eight key sources,
encompassing both quantitative data on microservice usage
practices and technical specifications, as well as empirical
evaluations. As starting points, the CNCF Annual Survey 2023
on Kubernetes prevalence and observability challenges [1],
the Cloud Native Now 2025 survey on GitOps adoption rates
[2], the New Relic report on IT-system downtime financial
costs [3], and the DevOps.com 2024 survey on time spent
on incident resolution [4] were employed. The empirical
study by Hammad et al. provided data on tracing overhead
in containerized code [5]. At the same time, the Grafana
Labs Observability Survey 2024 facilitated an assessment
of monitoring tool diversity and associated costs [6].
To understand GitOps practices in metric configuration
management, the CNCF GitOps Microsurvey was consulted
[7], and technical requirements for telemetry transmission
were studied based on the Prometheus Remote Write 2.0
specification [8].

Methodologically, the work combines several approaches:
comparative analysis of metric-collection and unification
practices in microservice architectures using aggregated
survey and report data [1,2,6]; systematic review of
technical documentation and specifications to identify
requirements for declarative metric description [8]; and
performance analysis of tracing and monitoring tools based
on empirical measurements [5]. To structure architectural
requirements, a content analysis of reports on business costs
of downtime and observability challenges was conducted [3,
4], which facilitated the formalization of target metrics and
SLAs. Finally, the synthesis of GitOps implementation data

[7] informed the design of the CI/CD process for the YAML
registry. As a result, the methodology integrates literature
review, specification analysis, comparative practice analysis,
and case-study content analysis to substantiate the choice of
adeclarative YAML layer in the proposed framework. Schema
fields are selected to satisfy ACCUT (accuracy/correctness
checks, completeness constraints, uniqueness keys, and
timeliness SLAs). KPI entities are aligned with Kimball’s
4-step modeling (process, grain, dimensions, facts) to keep
business vocabulary stable [9].

RESULTS AND DISCUSSION

For business, key metrics are considered part of financial
obligations: a survey of 1700 companies showed that
highly critical outages last on average 77 hours per year,
and each lost hour of iteration costs up to USD 1.9 million
[3], engineers spend nearly one third of their workweek—
approximately 30% of their time—on incident remediation
[4]. Conducting root cause analysis (RCA) and post-incident
reviews (37%), monitoring DevOps Research and Assessment
(DORA) metrics (34%), monitoring golden signals (33%),and
tracking, reporting, and influencing the mean time required
to detect and resolve outages (33%) are the top observability
best practices being followed, as shown in Figure 1.

40

Adoption Rate (%)

Conducting root cause
analysis (RCA) and
post-incident reviews

Monitering DevOps Research Monitoring golden signals
and Assessment (DORA)
metrics

Tracking, reporting and
influencing the mean time to
detect and resolve outages

QObservability Best Practice

Fig. 1. Observability Practices Adoption and Impact [4]

Under these conditions, product owners demand that KPI
data be updated with one-minute latency, support audit and
versioning, and comply with the SLA. Discrepant KPIs arise
when REQUEST is implicit. ‘Reason/Entities/Units/Events’
are externalized into YAML so that formulas are composed
from the same contract across services [9]. Meanwhile,
observability teams must provide a unified semantic metric
vocabulary independent of the service implementation
language, with the ability to trace each calculation formula
back to its source metrics.

The operational environment imposes strict constraints: over
80% of organizations already run Kubernetes in production,
with another 13% at the pilot stage, so most services
operate in short-lived containers, scale horizontally, and
communicate via a service mesh [2]. High label cardinality,
regulatory restrictions on cross-region data transfer, and
the need to process telemetry from a polyglot stack without

Universal Library of Engineering Technology

Page | 9

Design and Implementation of a YAML-Driven Metrics Layer Framework for Standardized

KPI Delivery in Microservices

modifying business code further complicate observability
load. Moreover, 45% of companies already use more than
five monitoring tools, creating significant licensing and
integration costs, and making it critical that a new platform
operate on top of the existing landscape without an agent
zoo [4].

Success criteria are quantified: the mean time to detect and
resolve incidents must decrease, the proportion of duplicate
KPIs must decline, and the time to deploy a new metric to
production must not exceed two hours from the merge
of its YAML configuration. The platform must ensure that
aggregated KPI query latency is below a specified number of
milliseconds at a given percentile, keep telemetry collection
overhead within each node’s CPU budget, and auto-
scale under load spikes without data loss. Meeting these
conditions will demonstrate that the declarative layer truly
addresses business objectives, fits technological constraints,
and delivers measurable operational benefit.

In-service telemetry remains popular due to its ease of
adoption; however, studies reveal its systemic costs. In a
comparison of seventy APIs across two clouds, full-code
tracing coverage reduced aggregate throughput by an
average of 8.4%, with losses of up to 30% in some cases [5].
These percentages translate into direct costs when dozens
of microservices operate under peak load; additionally, each
team describes metrics differently, leading to discrepancies
at the naming and labeling level. Any change to a business
formula necessitates a new deployment, which slows KPI
evolution and constrains analysts.

Second-generation observability platforms promise to
relieve integration pain by offering a single pane of glass,
yet in practice they exacerbate tooling fragmentation: the
Grafana Observability Survey 2024 found that 70% of teams
use at least four tools for metrics, logs, and tracing, and 61%
of participants cite unpredictable costs and excessive bills as
the primary operational challenge, as shown in Figure 2 [6].
RIPC guides platform design: Reduce duplicate collectors,
pre-Index label spaces, Partition writes by KPI ID/tenant,
Cache compiled rules [9].

Organizations with
centralized observability
that have saved time or

money

Teams using four or more
observability technologies

Number of different
observabilty technologies
cited as currently in use

Respondents citing cost o
unexpected bills as one of
their biggest concems

Observability Metric

Respondents using open
source observabilty tools

0% 25% 50% 5% 100%

Value

Fig. 2. Quantitative Assessment of Observability Tool
Adoption, Diversity, and Cost Implications [6]

Each additional aggregator introduces its format, cardinality
quotas, and pricing model, so computing a unified KPI often
requires chains of import-export between systems, leading
to version conflicts among libraries and exporters.

A declarative YAML layer eliminates both problem classes
by externalizing KPI descriptions into a version-controlled
repository and integrating them into a GitOps pipeline. A
survey [7] revealed that 60% of respondents have employed
GitOps for over a year, while another 31% started using it
within the past year. Additionally, 67% of the remaining
respondents plan to adopt it within the next year. Most
organizations rely on one or two cloud platforms or a hybrid
model, whereas purely on-premises or complex multi-cloud
configurations are notably less common, as illustrated in
Figure 3.

50

Adoption Rate (%)

2 1 1

One to two
cloud on-premises only cloud

Cloud and Virtual

machines

On-premises Three or more Legacy Other
platforms
(such as AWS
and Azure)

platforms

Platform Configuration

Fig. 3. Distribution of Organizational Infrastructure
Platforms [7]

Thus, storing metrics in YAML naturally aligns with the
established culture of declarative infrastructure: a change
to a formula is recorded via a pull request, automatically
subjected to tests and migrations, and then propagated
to the proxy layer without requiring service restarts. This
eliminates duplication, reduces operational expenditure,
and limits the latency for deploying a new metric to the time
needed for review rather than a complete deployment cycle,
thereby directly supporting the defined success criteria.
When a rule fails validation or exceeds cardinality budgets,
the rule version is quarantined and the last good snapshot
continues to be served [9].

The basic topology is built around three logical nodes:
a lightweight adapter deployed as a sidecar to each
microservice, a YAML registry that stores KPI configurations
in Git, and a proxy processor responsible for computing and
publishing aggregated series. Services continue to export
telemetry in Prometheus format. The adapter normalizes
labels, applies cardinality limiters, and, using the Remote
Write 2.0 protocol, forwards samples losslessly to the receiver.
The specification mandates control of protocol headers
and acknowledgments, thus eliminating double reads and
enhancing transmission reliability [8]. A Token Bucket is

Universal Library of Engineering Technology

Page | 10

Design and Implementation of a YAML-Driven Metrics Layer Framework for Standardized

KPI Delivery in Microservices

applied per tenant at ingest; on overload/429s, limits are
halved via AIMD and then slowly increased on recovery [9].
The YAML registry is hosted on a Git platform, where each
modification undergoes the standard pull-request process
and, thanks to the GitOps pipeline, automatically triggers a
configuration update in the proxy.

Data flows along two independent channels. The hot path
runs from adapters to the metric collector via Remote
Write; the collector stores raw series in a scalable TSDB and
immediately publishes them for PromQL queries. In parallel,
upon startup, the proxy loads a snapshot of all YAML files,
compiles formulas into recording rules, and, on schedule,
recalculates KPIs—applying the same labels as the source
metrics — so that consumers can switch to unified series
without reworking their dashboards. The cold path for
configuration changes originates from Git. After a merge,
a bot performs schema validation and test computations
on sample data, and upon success, delivers the new YAML
package to the proxy, thereby preserving continuous service
for historical version queries.

Scaling is achieved through strict node independence:
sidecars scale horizontally in line with service replicas, while
Kubernetes HPA manages proxies and collectors. Within
the proxy, computation tasks are sharded by KPI identifier,
allowing for linear throughput increases without requiring
state coordination; an intermediate results cache reduces
TSDB load during read spikes. Circuit-breaker policies
define acceptable degradation windows: upon timeout, the
proxy returns the last valid snapshot, and the adapter enters
a drop-labels mode, discarding low-priority labels to cap
cardinality. As a result, the system endures horizontal cluster
expansion without component refactoring and continues to
deliver KPIs.

The schema description begins with a minimal yet
comprehensive file structure reflecting the domain entity
of the key indicator. At the top level, it specifies a stable
metric identifier, a version field, a list of source series, and a
section for the calculation formula. For every KPI, the grain
(e.g., service, region, minute) is declared and dimension
keys are referenced; this STAR-compatible contract avoids
silent semantic drift [9]. Each source metric records its
name, a mandatory set of labels, and an aggregation type,
guaranteeing result reproducibility regardless of the
producing service’s language or environment. The formula
is written in a compact expression syntax closely resembling
Python, enabling an analyst with basic arithmetic knowledge
to define complex indicators without modifying microservice
code.

The schema defines several source categories. The most
common is Prometheus telemetry delivered via Remote
Write. The second category comprises high-level series
that are already aggregated in the time-series database
and require only further normalization. The third includes
events from logging systems, such as counters of successful

and failed transactions, which the proxy dynamically
converts into time series. This source catalog spares teams
from formatting data on the service side and simultaneously
allows the proxy to optimize the pipeline for each load type.

Formula and aggregation descriptions follow a declarative
approach: the KPI author operates on a list of reference
tokens, such as metricO, metricl, and so on, while the
compiler substitutes actual queries. Supported constructs
include arithmetic, conditional expressions, and aggregate
functions—such as total count and moving-window
average. The constrained feature set prevents arbitrary code
execution, thereby reducing the attack surface.

Versioning adheres to a semantic scheme: changes to
source-metric descriptions increment the patch number,
recomputation over historical intervals increments the minor
number, and incompatible changes to aggregation type or
measurement unit increment the major number. This rule
simplifies automatic selection of the correct formula version
when reading historical data, since the proxy always knows
which parameters were valid at write time.

Processing begins at the validator stage, which checks
JSON-schema compliance, tests the expression on a controlled
value set, and rejects configurations that yield indivisible
values or exceed allowable ranges. Static analysis further
detects dead code branches and cyclic metric references. Next,
the compiler transforms the declaration into PromQL or into
an SQL dialect when the storage supports aggregated-table
queries. The output is stored in a recording-rules catalog,
which the executor polls at intervals defined by the update

policy.

The executor performs computations, writes results back
to the same time-series database, and stores intermediate
values in a local cache. ACCUT telemetry (accuracy deltas,
staleness) and stage-level metrics (latency p95) are emitted
for each compute run, enabling rapid RCA similar to Spark
Ul heuristics [9]. The cache enables dashboards and alerts to
function even during brief storage outages and dramatically
reduces load when multiple queries hit the same KPI.
Configuration reloads occur without service interruption.
Git triggers a webhook, which delivers the update to the
proxy. The proxy then loads the new file package, validates
it locally, and atomically updates the rule-version reference.
Consequently, consumers receive updated metrics within
seconds, and computations initiated under the previous
schema complete correctly, preventing partial data loss
and ensuring SLA-level reliability. Bronze/Silver/Gold are
versioned in lockstep with KPI YAML; rollbacks swap only
the rule-version pointer, keeping raw series intact [9].

The parser is implemented using the Pydantic library, which
converts the loaded YAML into strongly typed objects,
verifying required fields, value ranges, and label-list integrity
before the configuration enters the execution subsystem.
This approach frees developers from manual validation and
provides clear, human-readable error reports, simplifying

Universal Library of Engineering Technology

Page | 11

Design and Implementation of a YAML-Driven Metrics Layer Framework for Standardized

KPI Delivery in Microservices

the repository review process. Upon successful validation,
the object model is passed to the query generator. For each
source metric, it matches the storage backend, applies
filters and the aggregation type, and then constructs an
expression in PromQL or the SQL dialect, as determined by
the connected storage. As a result, analysts obtain a uniform
query signature irrespective of the underlying time-series
storage technology.

For reliable and secure formula evaluation, an isolated
interpreter is employed. It is instantiated with an empty set of
built-in functions, permitting only the arithmetic operations
and aggregates required for business indicators. The code
of each formula is compiled into an abstract syntax tree and
then executed within this environment, where input/output
operations and network access are unavailable, thereby
virtually eliminating abuse. If computation completes
successfully, the result is immediately sent to the cache,
from which dashboards and alerting systems retrieve it.
For external clients, a thin REST and gRPC layer has been
developed, offering a list of available KPIs, their descriptions,
and metadata, as well as serving precomputed series in
formats compatible with popular visualization tools. This
abstraction boundary conceals the internal pipeline details,
enabling teams to adopt new storage backends or optimize
algorithms without modifying client code.

The configuration delivery process to production is built
around the familiar Git flow. Each change begins on a
separate branch, undergoes automated review by code
owners, and is then merged into the main development line
via a pull request. Post-merge, a trigger launches a pipeline
that repeats validation, runs a suite of tests on synthetic data,
and deploys the proxy container in an isolated namespace,
where analysts can verify how the new metric will appear
on real dashboards. If the outcome satisfies stakeholders,
the image is promoted to the production cluster. Should an
error be discovered, reverting the last commit suffices to
restore the previous rule set via the atomic configuration-
switch mechanism. This cycle guarantees that changes never
disrupt observability service operation, and the delivery
time for new metrics is limited to the duration of review and
automated tests.

Thus, the adoption of a declarative metrics layer based on YAML
centralizes KPI descriptions, ensures uniform computation,
and fully audits changes with minimal temporal overhead,
while preserving scaling flexibility and independence
from particular microservice implementations, reducing
operational costs and the risk of metric discrepancies; all of
this integrates seamlessly into existing GitOps processes and
the established culture of cloud infrastructure.

CONCLUSION

The new setup showcases nice standardization and brings
together key indicator calculations in lively small-service
scenes. Moving metric details and business formulas out of

service code into GitOps version control makes configuration
management more centralized, provides a clear change
history, and enables rule-based automatic deployment of
new rules without requiring component restarts. This setup
eliminates busy work, reduces metric drift, and reduces the
time it takes to push a new metric to production from days
to just hours.

The technical implementation, comprising three logical
nodes—a lightweight sidecar adapter, a YAML configuration
registry, and a proxy processor—has proven to be scalable
and fault-tolerant. The hot telemetry stream ensures
immediate availability of raw data in the TSDB, while the
proxy layer periodically recalculates aggregated KPlIs,
preserving a unified semantics for labels and metrics.
Caching mechanisms and circuit-breaker policies guarantee
SLA compliance under peak loads, and the isolated formula
interpreter reduces the attack surface and prevents arbitrary
code execution.

Reduced time to detect and eliminate incidents due to unified
metric vocabulary and fast root cause analysis;; percentage
of duplicate KPIs reduced due to a single source of truth;;
time to deploy a new metric to production does not exceed
the established two-hour SLA has been the key quantitative
success criteria. No additional agents are required, and
compatibility with existing monitoring and tracing tools
supports the adoption of the framework without disrupting
the current landscape.

Therefore, the proposed YAML-oriented approach provides
a resilient, flexible, and manageable platform for delivering
standardized KPIs in microservice architectures, aligns
with established GitOps workflows and cloud infrastructure
practices, and lowers operational costs while enhancing the
reliability of business metrics.

REFERENCES

1. CNCEF, “CNCF Annual Survey 2023,” CNCF, Apr. 09, 2024.
https://www.cncf.io/reports/cncf-annual-survey-
2023/ (accessed Jun. 26, 2025).

2. M. Vizard, “CNCF Survey Surfaces Steady Pace of Increased
Cloud-Native Technology Adoption,” Cloud Native Now,
Apr. 04, 2025. https://cloudnativenow.com/topics/
cloudnativedevelopment/cncf-survey-surfaces-steady-
pace-of-increased-cloud-native-technology-adoption/
(accessed Jun. 27, 2025).

3. New Relic, “New Relic Study Reveals IT Outages Cost
Businesses Up to $1.9 M Per Hour,” New Relic, 2024.
https://newrelic.com/press-release/20241022
(accessed Jun. 28, 2025).

4. M. Vizard, “Survey: IT Teams Spend About a Third of
Time Responding to Disruptions,” DevOps, Nov. 2024.
https://devops.com/survey-it-teams-spend-about-a-
third-of-time-responding-to-disruptions/ (accessed Jun.
29,2025).

Universal Library of Engineering Technology

Page | 12

KPI Delivery in Microservices

5. Y. Hammad, A. A.-S. Ahmad, and P. Andras, “An

Empirical Study on the Performance Overhead of Code
Instrumentation in Containerised Microservices,’
Journal of Systems and Software, vol. 230, pp. 112573-
112573, Jul. 2025, doi: https://doi.org/10.1016/j.
jss.2025.112573.

Grafana Labs, “Observability Survey Report 2024 - key

Design and Implementation of a YAML-Driven Metrics Layer Framework for Standardized

Prometheus, “Prometheus Remote-Write 2.0
specification,” Prometheus, 2024. https://prometheus.
io/docs/specs/prw/remote_write_spec_2_0/ (accessed
Jul. 03, 2025).

A. Anand, SELECT * FROM fact DE. Independently
published, 2025, p. 304. Accessed: Oct. 18,2025. [Online].
Available: https://a.co/d/4qMytUP

findings,” Grafana Labs, 2024. https://grafana.com/
observability-survey/2024/ (accessed Jul. 01, 2025).

7. G. Microsurvey, “Learning on the job as GitOps goes
mainstream,” CNCF. https://www.cncf.io/wp-content/
uploads/2023/11/CNCF_GitOps-Microsurvey_Final.pdf
(accessed Jul. 02, 2025).

Copyright: © 2025 The Author(s). This is an open access article distributed under the Creative Commons Attribution License,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Universal Library of Engineering Technology Page | 13

