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The candidate–job matching (CJM) problem, central to high-skill recruitment in domains like technology, management, and 
finance, has seen rapid progress through machine learning (ML) since 2021. Modern systems move beyond simple keyword 
matching, leveraging advanced natural language processing (NLP), graph representations, and hybrid recommender 
methods. Transformer-based models (e.g. BERT and derivatives) now embed resumes and job descriptions into semantic 
spaces, enabling nuanced similarity comparisons. Graph neural networks (GNNs) capture rich relationships among 
candidates, skills, and jobs, often outperforming traditional neural models in screening tasks. Classical ML approaches (e.g. 
support vector machines, tree ensembles) remain useful for structured feature matching but are complemented by deep 
models for unstructured text. Recommender-system techniques – including collaborative filtering, content-based filtering, 
and hybrid designs – incorporate contextual signals (experience, industries, user behaviors) to improve personalization. 
Reviewed benchmarks report that fine-tuned transformers and GNNs can significantly boost ranking accuracy (e.g. ~15% 
NDCG improvements [1]) and screening sensitivity (e.g. GNN balanced accuracy 65.4% vs 55.0% for a plain MLP [2]). 
These gains come with challenges: neural approaches often act as black boxes, raising interpretability concerns, and large 
models incur high computational costs that demand scalable architectures (e.g. bi-encoder retrieval with cross-encoder 
re-ranking in multi-stage pipelines). Bias mitigation has become critical; domain-specific models have been shown to yield 
fairer outcomes than off-the-shelf large language models. This review surveys recent (2021–2025) peer-reviewed work on 
CJM, covering algorithmic approaches (SVMs, ensemble trees, Siamese and cross-encoder transformers, GNNs, and hybrid 
recommenders), model architectures, input representations (resumes, job text, skill ontologies), and evaluation methods. We 
synthesize experimental findings from academic studies, discussing strengths and limitations of each approach, including 
accuracy, robustness, interpretability, and fairness. Finally, we highlight open challenges and directions for making CJM 
more transparent and equitable while maintaining scalability in practice.
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Models.
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Introduction
Recruitment in various sectors (technology, management, 
finance, etc.) increasingly relies on automated systems to 
filter large applicant pools. Traditionally, candidate screening 
and job matching depended on manual resume review or 
simple keyword matching in Applicant Tracking Systems 
(ATSs). However, manual screening is time-consuming and 
prone to human bias [2]. The massive growth of online 
job postings and digital resumes has motivated advanced 
machine learning (ML) approaches for candidate–job 
matching (CJM). Early automated methods used rule-
based or keyword-based matching, which often miss latent 
semantic alignments and poorly handle varied language in 
resumes and job descriptions [1]. By contrast, modern ML 

and AI techniques can learn to interpret unstructured text 
and structured profile data jointly, yielding more accurate 
and scalable matching.

Recent breakthroughs in NLP, especially transformer 
architectures (BERT, RoBERTa, etc.), have enabled deeper 
semantic understanding of textual data. Systems now encode 
resumes and job descriptions into embedding vectors in 
a shared latent space, allowing cosine-similarity ranking 
or learned matching scores. For example, the CareerBERT 
system fine-tuned a sentence-BERT (SBERT) model in a 
Siamese network to project resumes and standardized 
job titles into the same space, outperforming traditional 
keyword methods. Beyond text, researchers are constructing 
richer data representations: graph-based models capture 
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relationships among candidates, skills, and roles, enabling 
candidates to match to jobs via multi-hop semantic paths 
[2]. Hybrid recommender approaches integrate content 
similarity with collaborative signals (e.g. historical application 
patterns), sometimes augmented with contextual features 
like geolocation or industry trends [3].

This review critically surveys ML methods developed 
between 2021 and 2025 for candidate–job matching. We 
focus on high-skill domains but note many techniques apply 
broadly. We detail algorithmic approaches (traditional ML, 
deep learning, recommender systems), model architectures 
(e.g. Siamese encoders vs cross-encoders, GNN variants), data 
inputs and outputs (resume text, job descriptions, skills), and 
evaluation protocols (ranking and classification metrics). 
Key performance results from academic benchmarks (peer-
reviewed journals and conferences) are summarized. We also 
discuss interpretability and ethical considerations – notably 
how ML choices affect bias and fairness – and the scalability 
of these models in real-world recruiting scenarios. The 
survey highlights emerging strengths (semantic matching, 
graph reasoning) and remaining challenges (data quality, 
opacity, computational cost) to guide future research on fair, 
efficient, and accurate candidate–job matching.

Materials and Methods
This study employs a systematic review approach to 
examine recent advances (2021–2025) in machine learning 
algorithms applied to candidate–job matching (CJM). 
The objective was to synthesize peer-reviewed research 
addressing algorithmic innovations, model architectures, and 
empirical outcomes in automated recruitment systems. The 
review followed a PRISMA-inspired conceptual structure, 
ensuring methodological transparency and reproducibility 
while emphasizing analytical depth and technical relevance 
to high-skill sectors such as technology, management, and 
finance.

Each selected paper was reviewed for methodological rigor 
and categorized according to algorithmic type — including 
traditional ML, transformer-based NLP, graph-based, 
recommender, and hybrid architectures. Key data extracted 
from each study included the model architecture, type of input 
data (e.g., resumes, job descriptions, or skills ontologies), 
evaluation methodology, and reported performance metrics 
such as accuracy, F1-score, AUC, NDCG, and MAP. This 
categorization enabled cross-study comparison of strengths 
and limitations across algorithm families, particularly 
regarding interpretability, scalability, and bias handling.

Data synthesis employed a comparative and narrative 
analysis framework rather than meta-analysis, due to dataset 
heterogeneity. Reported results were grouped by model 
category and benchmarked against traditional baselines 
to highlight relative improvements. Additional validation 
was conducted by verifying publication credibility, cross-
referencing open-source implementations, and reviewing 
industrial-scale systems. This integrative methodology 

ensured a balanced perspective between academic research 
and applied AI systems in recruitment.

Key Algorithms and Frameworks

This section summarizes the core algorithms and data 
representations used in modern CJM systems. We organize 
the methods into major categories and describe typical 
architectures. 

Inputs and Outputs: CJM systems generally take as input a 
candidate profile (often a resume or CV) and a job description 
(JD). Resumes and JDs are primarily unstructured text but 
may include structured fields (skills, education, experience). 
Preprocessing often involves parsing resumes (e.g. skill/
experience extraction), and text normalization (tokenization, 
lemmatization). Inputs are encoded into feature vectors or 
embeddings. The output is a compatibility score or ranking: 
either a match score between one candidate and one job, or 
a list of top-k job recommendations for a candidate (or vice 
versa).

Traditional Machine Learning Approaches

Classical ML models have been adapted for CJM by 
engineering features from resumes and job specs. For 
example, bag-of-words or TF-IDF vectors of skill keywords 
can feed into linear models or tree ensembles. Supervised 
classifiers (e.g. Support Vector Machines, Random Forests, 
XGBoost) have been trained to predict candidate suitability. 
These models rely on handcrafted features such as skill 
overlaps, similarity of standardized attributes, or applicant 
metadata. Due to their transparency, methods like decision 
trees offer some interpretability. However, they struggle with 
the rich semantics of free text and require extensive feature 
engineering. Still, gradient-boosted trees (e.g. XGBoost) and 
LSTMs (for sequence modeling) are cited among common 
methods in job recommender research [3]. Some systems 
apply ranking SVMs or pairwise ranking forests to score 
candidates for a given job. These methods typically use 
metrics such as precision/recall or AUC for evaluation.

Transformer-based NLP Models

A major trend is using transformer neural networks to 
encode text. Bidirectional Encoder Representations (BERT) 
and its variants (RoBERTa, DistilBERT) are fine-tuned on 
CJM tasks. Two architectural patterns prevail:

Siamese neural networks (two-tower bi-encoders) •	
project job descriptions and résumés into a shared 
embedding space so that semantically compatible 
pairs lie close together while incompatible pairs are far 
apart. In a practical CJM setup, each tower comprises 
(i) a multilingual sentence-transformer backbone that 
converts segments of the input document into contextual 
vectors, followed by (ii) a sequential head that models 
dependencies across segments before producing a single 
fixed-length representation for the job or candidate. 
We consider three interchangeable heads on the same 
backbone: GRU, LSTM, and a lightweight Transformer 
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encoder. Training uses triplet loss over (anchor job, 
positive résumé, negative résumé) tuples, encouraging 
the model to reduce the distance between true matches 
and enlarge it for non-matches by a margin. At inference, 
cosine similarity between the two tower outputs serves 
as the match score; in large candidate pools this enables 
efficient ANN retrieval (e.g., FAISS) with optional re-
ranking [4].

Cross-encoder models:•	  Alternatively, a single 
transformer takes the concatenated resume and job 
description as input, outputting a compatibility score. 
This “cross-attention” allows richer interaction between 
texts, often improving accuracy at the cost of speed. 
Cross-encoders can consider fine-grained alignments 
but require re-encoding the pair each time (scaling 
quadratically with pair count). As a result, many systems 
use a two-stage pipeline: a fast bi-encoder to retrieve 
a small set of candidate matches, followed by a cross-
encoder ranker for final scoring. This architecture is 
analogous to modern document retrieval systems. While 
powerful, cross-encoders are generally used when only 
a limited number of pairs must be scored or in offline 
analysis.

Recent studies employ both strategies. For example, the 
Resume2Vec framework uses multiple transformer encoders 
(BERT, RoBERTa, DistilBERT) to embed documents [1]. 
It reported large gains in ranking metrics (up to ~15% 
NDCG improvement) over keyword-based ATS systems . In 
practice, domain-adapted BERT models (e.g. pre-trained on 
job corpora) often boost performance further.

Graph Neural Network (GNN) Models

Graph-based methods model CJM as a graph problem. One 
approach is to construct a bipartite graph connecting 
candidate nodes and job nodes via edges representing 
relationships. Nodes may also include skill or attribute 
entities. Edge features can encode semantic similarities 
(e.g. cosine similarity of embeddings). GNNs then propagate 
information across this graph to predict match outcomes. For 
instance, Frazzetto et al. built small candidate–job graphs (14 
nodes: candidate, job, and attributes) with edges weighted by 
embedding similarities [2]. They trained GNNs (e.g., Graph 
Convolutional Networks, Gated Graphs, Graph Attention 
Networks) on binary screening labels. In experiments, 
GNNs significantly outperformed an MLP baseline: a GCN 
achieved 65.4% balanced accuracy vs 55.0% for an MLP, and 
detected nearly half of qualified candidates versus under 
10% for the MLP . This highlights GNN strength in leveraging 
relational structure and catching minority outcomes. Beyond 
bipartite designs, large-scale industrial systems create vast 
heterogeneous graphs. LinkedIn’s STAR system (2025 KDD) 
integrates an industry-scale job–candidate graph (billions 
of nodes/edges) with a transformer+GNN pipeline [5]. The 
STAR model trains an LLM encoder on long profile/job text 
and a GNN over the graph to augment signals, achieving 

improved recommendation quality in A/B tests. In summary, 
GNNs are favored for their ability to capture multi-hop 
dependencies (e.g. shared skills or social connections) and 
to mitigate cold-start by graph connectivity. Architectures 
include GCN, GraphSAGE, GAT, and heterogeneous GNNs, 
often combined with learned embeddings from text.

Beyond applied pipelines, there is also a rich graph-theoretic 
foundation relevant to how we represent and reason over 
CJM data. In automata theory and formal languages, labeled 
directed graphs encode state transitions, and their structural 
properties—such as uniqueness and bounds for admissible 
edge labelings—affect the information capacity of a graph. 
For example, one study [6] analyzed the number of possible 
labelings in definite automata graphs, proving uniqueness 
for strongly connected graphs over binary alphabets and 
exponential upper bounds as the alphabet grows. These 
insights extend naturally to applied ML: candidate–job 
graphs are likewise labeled, directed, and multi-relational, 
and their label sets (skills, roles, outcomes) govern the 
graph’s ability to disambiguate paths and support expressive 
message passing. Situating GNN design within such labeling 
constraints provides a formal basis for using heterogeneous 
graphs with typed edges, relation-specific attention 
mechanisms, or edge-weight priors derived from domain 
ontologies, ensuring the learned representations remain 
both structured and interpretable.

Hybrid and Recommender Systems Approaches

Recommender-system techniques are widely applied to 
CJM. Systems combine content-based filtering (matching 
resume content to job content) with collaborative filtering 
(using applicant-job interaction history) in hybrid models. 
For example, hybrid designs might weight content similarity 
alongside a user–item matrix factorization or k-nearest-
neighbors on historical applications. Others incorporate 
knowledge graphs or ontologies (e.g. ESCO taxonomy) to 
enrich profiles. Hybrid systems often include contextual 
features: one review notes that adding geographic and 
industry context to CF+content models improves match 
accuracy . Common algorithms used include matrix 
factorization, k-NN, and knowledge-based inference. The 
systematic review by Ertuğrul and Bitirim found that content-
based, collaborative, hybrid, and knowledge-based filters 
dominate the literature [3]. Evaluation metrics are drawn 
from recommender and IR domains: precision@k, recall, 
F1, NDCG, MAP, AUC, etc . Notably, hybrid models have been 
reported to reduce false positives in candidate ranking and 
to leverage both text embeddings and collaborative signals 
for cold-start alleviation.

Collectively, the models reviewed in this section represent 
the core algorithmic paradigms that define modern 
candidate–job matching research. While each approach 
differs in architecture, training objectives, and scalability, 
they share the same ultimate goal—deriving a robust 
semantic representation of both candidates and roles to 
enable accurate and explainable matching.
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Table 1 provides a comparative overview of the principal model families identified in the literature, summarizing their input 
representations, architectural properties, advantages, limitations, and common evaluation metrics.

Table 1. Comparative overview of key algorithms and frameworks for candidate–job matching (CJM).

Model Category Core Input 
Representation

Architecture 
Highlights

Main Advantages Limitations / 
Trade-offs

Typical Eval 
Metrics

Traditional ML TF-IDF, bag-of-
words, handcrafted 
features

Linear/SVM, 
Random Forest, 
XGBoost

Transparent, easy 
to deploy

Poor semantic 
coverage, heavy 
feature engineering

Accuracy, F1, 
AUC

Transformer-
based NLP

Contextual text 
embeddings (BERT, 
SBERT, RoBERTa)

Bi-encoder / Cross-
encoder

Strong semantic 
understanding, 
multilingual

High compute cost, 
low interpretability

NDCG, MAP, 
MRR

Siamese Networks 
(GRU/LSTM
/Transformer 
heads)

Sentence 
embeddings + 
sequential modeling

Dual-tower with 
triplet loss

Efficient retrieval, 
captures document 
structure

Sensitive to margin 
tuning; two-stage 
design may add 
latency

Top-K 
Accuracy, MRR

Graph Neural 
Networks (GNNs)

Node/edge 
embeddings 
(candidate–job–skill 
graphs)

GCN, GraphSAGE, 
GAT, heterogeneous 
GNN

Models multi-hop 
dependencies, 
cold-start 
resilience

Needs labeled 
relations; limited 
scalability on dense 
graphs

Balanced 
Accuracy, 
Recall@K

Hybrid / 
Recommender 
Systems

Text + interaction 
logs

Content-based 
+ Collaborative 
filtering

Personalized, 
leverages 
behavioral data

Cold-start for 
new entities, data 
sparsity

Precision@K, 
Recall@K, 
NDCG

LLM / Hybrid 
GNN–LLM Systems

Long text, graph 
structure

LLM encoder + 
graph propagation

Integrates global 
context, flexible 
zero-shot use

Expensive inference, 
bias risk

AUC-ROC, 
Fairness 
metrics

Results
Several recent studies report quantitative gains from modern 
ML models over traditional baselines. We summarize key 
findings:

Transformer Embedding Models:•	  Fine-tuned 
transformer encoders significantly outperform keyword 
or static-embedding methods. For example, Kurek et 
al. (2024) [8] evaluated a zero-shot MiniLM-based 
recommendation model and achieved Top-100 accuracy 
of 55.45% and Top-500 accuracy of 81.11%, surpassing 
conventional ATS baselines. Similarly, the Resume2Vec 
system (MDPI 2023) reported up to 15.85% higher 
NDCG and 15.94% higher RBO compared to keyword 
search [1].

Siamese vs. Cross-Encoder Models:•	  Empirical 
evidence continues to favor Siamese (bi-encoder) 
architectures for large-scale recruitment pipelines 
due to their strong balance of accuracy and scalability. 
Recent work [4] introduced a modular Siamese 
framework that systematically compares GRU, LSTM, 
and Transformer sequential heads atop a multilingual 
Sentence Transformer backbone, trained end-to-end 
with triplet loss on real-world recruitment data. Among 
the tested variants, the Transformer-based Siamese 
model achieved a Mean Reciprocal Rank (MRR) of 0.979 
and a Top-100 accuracy of 87.2%, outperforming both 
traditional baselines and static embedding approaches. 
Visualization of embedding spaces using t-SNE further 

confirmed that self-attention mechanisms produced 
tighter clustering of matching job–résumé pairs and 
clearer separation of irrelevant ones. By contrast, cross-
encoder architectures—where job and résumé texts are 
jointly encoded with cross-attention—typically yield 
marginally higher per-pair accuracy but at a significant 
computational cost, as they require re-encoding every 
candidate–job combination. For large candidate pools, 
this leads to quadratic scaling, making real-time retrieval 
impractical. Consequently, most modern CJM systems 
adopt a two-stage pipeline: an efficient Siamese bi-
encoder for initial retrieval, followed by a cross-encoder 
ranker applied to the top-N matches. This hybrid design 
preserves the high precision of cross-attention models 
while maintaining the speed necessary for production-
scale candidate search.

Graph Neural Networks:•	  The GNN-based approaches 
report marked improvement in screening efficacy, 
especially for the critical minority class of qualified 
candidates. Frazzetto et al. (2025) found that a GCN 
achieved 65.4% balanced accuracy on a resume screening 
task, compared to 55.0% for a feed-forward MLP [2]. 
The GNN identified 48.9% of qualified candidates 
versus only 8.5% for the MLP. These gains illustrate that 
modeling the relational graph structure can uncover 
subtler signals of fit that flat models miss. Industrial-
scale results (e.g. LinkedIn) are generally proprietary 
but allude to improved candidate engagement and match 
relevance when integrating GNNs [5].
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Hybrid Recommenders:•	  Studies show that combining 
content and collaborative information mitigates 
typical recommender problems. For example, adding 
geographical context and skill-skill relationships into 
a content-based model yields higher recommendation 
relevance [7]. The SLR by Ertuğrul and Bitirim noted 
extensive use of hybrid and knowledge-based techniques, 
and reported that hybrid models tended to reduce false 
positives in ranking compared to pure content filters [3]. 
Specific accuracy numbers vary by dataset, but hybrid 
systems generally achieve higher precision and recall 
metrics (e.g. 90%+ F1 on certain curated benchmarks) 
than single-method baselines.

Large Language Models (LLMs):•	  While powerful, off-
the-shelf LLMs show mixed performance in CJM. An 
internal study (Eightfold AI, 2025) compared various 
LLMs (GPT variants, Claude, etc.) against a proprietary 
supervised CJM model (“Match Score”) on 10,000 
real candidate–job pairs. The domain-specific model 
achieved ROC AUC of 0.85, outperforming the best 

general LLM at AUC 0.77 . The LLMs also had larger 
disparities in fairness metrics across demographic 
groups. This suggests that while LLMs capture broad 
language patterns, specialized fine-tuning on hiring 
data yields more accurate and equitable matching. 
Nonetheless, LLM-derived embeddings and outputs can 
enhance existing pipelines if carefully managed.

Taken together, these results indicate that advanced ML 
methods can substantially improve the quality of candidate–
job matching. Transformer embeddings and graph-based 
models often lead to double-digit improvements in ranking 
metrics . However, performance depends on data quality 
and representation. Most studies emphasize that rigorous 
evaluation (including human expert assessment) is necessary 
to validate gains in real hiring scenarios.

Quantitative outcomes from recent studies are summarized 
below. Figure 1 visualizes headline results across model 
families on a common percentage scale to facilitate 
comparison.

Figure 1. CJM results from recent studies (2023–2025)

Discussion

The surveyed methods exhibit complementary strengths 
and weaknesses in the CJM context:

Semantic Understanding (Transformer-based •	
models): Deep NLP models excel at capturing context and 
meaning in text. They can detect synonymy and related 
skills automatically, greatly improving matching over 
keyword filters [1]. Their embeddings encode candidate 
expertise holistically, accommodating varied resume 
formats. However, they are large and opaque: BERT-
based models have millions of parameters, making them 
slow to train and requiring GPU resources. Inference 
can be costly for pairwise scoring. Interpretability is 
a challenge – understanding why a model matched a 
resume to a job often requires post-hoc explanation 
techniques (e.g. attention visualization). Additionally, 
fine-tuning requires substantial labeled data, and models 

can inherit biases from training corpora . Mitigation 
strategies (balanced training, fairness constraints) are 
advised, as these systems will influence high-stakes 
hiring outcomes.

Efficiency and Scalability:•	  In large organizations, 
scalability is critical. Siamese encoder models alleviate 
this by precomputing embeddings; a bi-encoder can 
score millions of candidate–job pairs with simple vector 
operations. Cross-encoders, despite higher accuracy on 
single pairs, are usually restricted to filtering among 
a few candidates. Industrial systems (e.g. the STAR 
framework [5]) combine offline training of embeddings 
with nearline serving for fresh data, achieving real-
time matching. GNN training on massive graphs can be 
resource-intensive; approaches like inductive learning 
and mini-batching of graph data are employed. The 
LinkedIn STAR and other industry reports highlight 
that a decoupled training scheme (train LLM and GNN 
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separately, then merge signals) provides a practical 
trade-off .

Graph Structured Learning:•	  GNNs offer rich relational 
reasoning but introduce complexity. Constructing 
meaningful graphs (defining nodes and edges) requires 
domain knowledge (e.g. skill ontologies) and sometimes 
external data sources (social links, job taxonomies). 
While GNNs can improve minority candidate detection 
[2], they make interpretability harder: understanding 
which graph connections led to a high score is nontrivial. 
Nonetheless, messages passing in GNNs can be analyzed 
or visualized to some extent, and the structure itself 
(e.g. shared skill neighbors) provides intuitive cues. 
Moreover, GNNs can mitigate cold-start by linking new 
candidates through attribute nodes (skills, education) to 
existing job/people networks.

Hybrid Recommenders:•	  Combining multiple signal 
types often yields robustness. For example, adding 
content similarity (resumes ↔ jobs) to collaborative 
signals (co-application patterns) can improve recall 
without sacrificing precision [7]. Hybrid models can 
be more interpretable if built with components like 
weighted linear combinations of scores. They also allow 
modular updates: one can swap in a new text model or 
a new collaborative module independently. However, 
tuning and integrating heterogeneous methods can be 
complex. Cold-start remains a concern if neither content 
nor history is available (e.g. brand-new skills or roles).

Bias and Fairness:•	  Recruitment systems must ensure 
non-discrimination. The surveyed literature notes that 
generic LLMs can inadvertently perpetuate gender or 
racial bias learned from data . In contrast, supervised 
models trained on curated hiring data (as in Match 
Score) achieved near-equal impact ratios across 
demographics. Interpretability tools (feature importance 
in tree models, attention weights) can help diagnose bias 
sources. Fairness-aware learning algorithms and bias 
audits are recommended. Additionally, hybrid systems 
can incorporate fairness constraints explicitly. Ethical 
deployment guidelines suggest combining quantitative 
fairness evaluation with human oversight.

Interpretability:•	  Simple models (logistic regression, 
decision trees) allow direct attribution of matches 
to skill overlaps or historical evidence. Deep models 
require auxiliary explanation methods (e.g. LIME, SHAP). 
Explainability is particularly important in HR to justify 
decisions to stakeholders. Recent work on explainable 
person–job recommendation (outside our date range) 
points to generating natural-language rationales or 
highlighting key resume sections as interpretability 
aids. Incorporating such explainers into CJM pipelines is 
an open area for future work.

Challenges: Despite advancements, gaps remain. No gold-
standard public datasets exist, hampering benchmark 

comparisons. Many systems are proprietary or tested on 
specific corpora, so reported results may not generalize. Data 
privacy concerns also limit sharing of real resumes. Moreover, 
evolving job markets mean that models must adapt to new 
skills and roles; continuous learning pipelines are needed. 
Finally, candidate preferences and multi-objective matching 
(culture fit, career goals) are still underexplored dimensions 
beyond raw skill alignment.

Conclusion
In the last five years, candidate–job matching has transitioned 
from rule-based systems to sophisticated ML-driven pipelines. 
Transformer encoders, GNNs, and hybrid recommenders now 
underpin the state-of-the-art. These methods offer markedly 
better matching accuracy and relevance than traditional 
approaches . They capture semantic and relational nuances 
in ways that keyword matching cannot. At the same time, 
these gains must be weighed against practical and ethical 
considerations. Ensuring model interpretability, fairness, and 
scalability is essential for responsible deployment. Domain-
specific fine-tuning and bias auditing are particularly 
important when using large language models in hiring 
contexts . Going forward, we expect continued integration of 
pre-trained language models and graph techniques, alongside 
hybrid designs that leverage diverse data sources. Open 
challenges include creating shared evaluation frameworks, 
improving transparency, and balancing personalization with 
equity. Overall, the recent advances make automated CJM a 
powerful tool to assist recruiters – provided its limitations 
are recognized and mitigated.
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