Research Article

Universal Library of Engineering Technology

ISSN: 3064-996X | Volume 2, Issue 4
Open Access | PP: 22-28

DOI: https://doi.org/10.70315 /uloap.ulete.2025.0204004

Universal Library Open Access Publications LLC

Recent Advances in Machine Learning Algorithms for Candidate-Job
Matching

Roman Ishchenko, PhD
Raised Networks Inc., USA.

The candidate-job matching (CJM) problem, central to high-skill recruitment in domains like technology, management, and

finance, has seen rapid progress through machine learning (ML) since 2021. Modern systems move beyond simple keyword
matching, leveraging advanced natural language processing (NLP), graph representations, and hybrid recommender
methods. Transformer-based models (e.g. BERT and derivatives) now embed resumes and job descriptions into semantic
spaces, enabling nuanced similarity comparisons. Graph neural networks (GNNs) capture rich relationships among
candidates, skills, and jobs, often outperforming traditional neural models in screening tasks. Classical ML approaches (e.g.
support vector machines, tree ensembles) remain useful for structured feature matching but are complemented by deep
models for unstructured text. Recommender-system techniques - including collaborative filtering, content-based filtering,
and hybrid designs - incorporate contextual signals (experience, industries, user behaviors) to improve personalization.
Reviewed benchmarks report that fine-tuned transformers and GNNs can significantly boost ranking accuracy (e.g. ~15%
NDCG improvements [1]) and screening sensitivity (e.g. GNN balanced accuracy 65.4% vs 55.0% for a plain MLP [2]).
These gains come with challenges: neural approaches often act as black boxes, raising interpretability concerns, and large
models incur high computational costs that demand scalable architectures (e.g. bi-encoder retrieval with cross-encoder
re-ranking in multi-stage pipelines). Bias mitigation has become critical; domain-specific models have been shown to yield
fairer outcomes than off-the-shelf large language models. This review surveys recent (2021-2025) peer-reviewed work on
CJM, covering algorithmic approaches (SVMs, ensemble trees, Siamese and cross-encoder transformers, GNNs, and hybrid
recommenders), model architectures, input representations (resumes, job text, skill ontologies), and evaluation methods. We
synthesize experimental findings from academic studies, discussing strengths and limitations of each approach, including
accuracy, robustness, interpretability, and fairness. Finally, we highlight open challenges and directions for making C/M
more transparent and equitable while maintaining scalability in practice.

Keywords: Candidate-Job Matching; Graph Neural Networks; Machine Learning; Recommendation Systems; Transformer
Models.

INTRODUCTION

Recruitment in various sectors (technology, management,
finance, etc.) increasingly relies on automated systems to
filter large applicant pools. Traditionally, candidate screening
and job matching depended on manual resume review or
simple keyword matching in Applicant Tracking Systems
(ATSs). However, manual screening is time-consuming and
prone to human bias [2]. The massive growth of online
job postings and digital resumes has motivated advanced
machine learning (ML) approaches for candidate-job
matching (CJM). Early automated methods used rule-
based or keyword-based matching, which often miss latent
semantic alignments and poorly handle varied language in
resumes and job descriptions [1]. By contrast, modern ML

and Al techniques can learn to interpret unstructured text
and structured profile data jointly, yielding more accurate
and scalable matching.

Recent breakthroughs in NLP, especially transformer
architectures (BERT, RoBERTa, etc.), have enabled deeper
semantic understanding of textual data. Systems now encode
resumes and job descriptions into embedding vectors in
a shared latent space, allowing cosine-similarity ranking
or learned matching scores. For example, the CareerBERT
system fine-tuned a sentence-BERT (SBERT) model in a
Siamese network to project resumes and standardized
job titles into the same space, outperforming traditional
keyword methods. Beyond text, researchers are constructing
richer data representations: graph-based models capture

Citation: Roman Ishchenko, “Recent Advances in Machine Learning Algorithms for Candidate-Job Matching”, Universal

Library of Engineering Technology, 2025; 2(4): 22-28. DOI: https://doi.org/10.70315 /uloap.ulete.2025.0204004.

www.ulopenaccess.com

Page | 22



Recent Advances in Machine Learning Algorithms for Candidate-Job Matching

relationships among candidates, skills, and roles, enabling
candidates to match to jobs via multi-hop semantic paths
[2]. Hybrid recommender approaches integrate content
similarity with collaborative signals (e.g. historical application
patterns), sometimes augmented with contextual features
like geolocation or industry trends [3].

This review critically surveys ML methods developed
between 2021 and 2025 for candidate-job matching. We
focus on high-skill domains but note many techniques apply
broadly. We detail algorithmic approaches (traditional ML,
deep learning, recommender systems), model architectures
(e.g. Siamese encoders vs cross-encoders, GNN variants), data
inputs and outputs (resume text, job descriptions, skills), and
evaluation protocols (ranking and classification metrics).
Key performance results from academic benchmarks (peer-
reviewed journals and conferences) are summarized. We also
discuss interpretability and ethical considerations - notably
how ML choices affect bias and fairness - and the scalability
of these models in real-world recruiting scenarios. The
survey highlights emerging strengths (semantic matching,
graph reasoning) and remaining challenges (data quality,
opacity, computational cost) to guide future research on fair,
efficient, and accurate candidate-job matching.

MATERIALS AND METHODS

This study employs a systematic review approach to
examine recent advances (2021-2025) in machine learning
algorithms applied to candidate-job matching (CJM).
The objective was to synthesize peer-reviewed research
addressing algorithmic innovations, model architectures, and
empirical outcomes in automated recruitment systems. The
review followed a PRISMA-inspired conceptual structure,
ensuring methodological transparency and reproducibility
while emphasizing analytical depth and technical relevance
to high-skill sectors such as technology, management, and
finance.

Each selected paper was reviewed for methodological rigor
and categorized according to algorithmic type — including
traditional ML, transformer-based NLP, graph-based,
recommender, and hybrid architectures. Key data extracted
from each study included the model architecture, type of input
data (e.g., resumes, job descriptions, or skills ontologies),
evaluation methodology, and reported performance metrics
such as accuracy, Fl-score, AUC, NDCG, and MAP. This
categorization enabled cross-study comparison of strengths
and limitations across algorithm families, particularly
regarding interpretability, scalability, and bias handling.

Data synthesis employed a comparative and narrative
analysis framework rather than meta-analysis, due to dataset
heterogeneity. Reported results were grouped by model
category and benchmarked against traditional baselines
to highlight relative improvements. Additional validation
was conducted by verifying publication credibility, cross-
referencing open-source implementations, and reviewing
industrial-scale systems. This integrative methodology

ensured a balanced perspective between academic research
and applied Al systems in recruitment.

Key Algorithms and Frameworks

This section summarizes the core algorithms and data
representations used in modern CJM systems. We organize
the methods into major categories and describe typical
architectures.

Inputs and Outputs: CJM systems generally take as input a
candidate profile (often aresume or CV) and a job description
(JD). Resumes and ]JDs are primarily unstructured text but
may include structured fields (skills, education, experience).
Preprocessing often involves parsing resumes (e.g. skill/
experience extraction), and text normalization (tokenization,
lemmatization). Inputs are encoded into feature vectors or
embeddings. The output is a compatibility score or ranking:
either a match score between one candidate and one job, or
a list of top-k job recommendations for a candidate (or vice
versa).

Traditional Machine Learning Approaches

Classical ML models have been adapted for CJM by
engineering features from resumes and job specs. For
example, bag-of-words or TF-IDF vectors of skill keywords
can feed into linear models or tree ensembles. Supervised
classifiers (e.g. Support Vector Machines, Random Forests,
XGBoost) have been trained to predict candidate suitability.
These models rely on handcrafted features such as skill
overlaps, similarity of standardized attributes, or applicant
metadata. Due to their transparency, methods like decision
trees offer some interpretability. However, they struggle with
the rich semantics of free text and require extensive feature
engineering. Still, gradient-boosted trees (e.g. XGBoost) and
LSTMs (for sequence modeling) are cited among common
methods in job recommender research [3]. Some systems
apply ranking SVMs or pairwise ranking forests to score
candidates for a given job. These methods typically use
metrics such as precision/recall or AUC for evaluation.

Transformer-based NLP Models

A major trend is using transformer neural networks to
encode text. Bidirectional Encoder Representations (BERT)
and its variants (RoBERTa, DistilBERT) are fine-tuned on
CJM tasks. Two architectural patterns prevail:

¢ Siamese neural networks (two-tower bi-encoders)
project job descriptions and résumés into a shared
embedding space so that semantically compatible
pairs lie close together while incompatible pairs are far
apart. In a practical CJM setup, each tower comprises
(i) a multilingual sentence-transformer backbone that
converts segments of the input document into contextual
vectors, followed by (ii) a sequential head that models
dependencies across segments before producing a single
fixed-length representation for the job or candidate.
We consider three interchangeable heads on the same
backbone: GRU, LSTM, and a lightweight Transformer

Universal Library of Engineering Technology

Page | 23



Recent Advances in Machine Learning Algorithms for Candidate-Job Matching

encoder. Training uses triplet loss over (anchor job,
positive résumé, negative résumé) tuples, encouraging
the model to reduce the distance between true matches
and enlarge it for non-matches by a margin. At inference,
cosine similarity between the two tower outputs serves
as the match score; in large candidate pools this enables
efficient ANN retrieval (e.g., FAISS) with optional re-
ranking [4].

e Cross-encoder models: Alternatively, a single
transformer takes the concatenated resume and job
description as input, outputting a compatibility score.
This “cross-attention” allows richer interaction between
texts, often improving accuracy at the cost of speed.
Cross-encoders can consider fine-grained alignments
but require re-encoding the pair each time (scaling
quadratically with pair count). As a result, many systems
use a two-stage pipeline: a fast bi-encoder to retrieve
a small set of candidate matches, followed by a cross-
encoder ranker for final scoring. This architecture is
analogous to modern document retrieval systems. While
powerful, cross-encoders are generally used when only
a limited number of pairs must be scored or in offline
analysis.

Recent studies employ both strategies. For example, the
ResumeZVec framework uses multiple transformer encoders
(BERT, RoBERTa, DistilBERT) to embed documents [1].
It reported large gains in ranking metrics (up to ~15%
NDCG improvement) over keyword-based ATS systems . In
practice, domain-adapted BERT models (e.g. pre-trained on
job corpora) often boost performance further.

Graph Neural Network (GNN) Models

Graph-based methods model CJ]M as a graph problem. One
approach is to construct a bipartite graph connecting
candidate nodes and job nodes via edges representing
relationships. Nodes may also include skill or attribute
entities. Edge features can encode semantic similarities
(e.g. cosine similarity of embeddings). GNNs then propagate
information across this graph to predict match outcomes. For
instance, Frazzetto et al. built small candidate-job graphs (14
nodes: candidate, job, and attributes) with edges weighted by
embedding similarities [2]. They trained GNNs (e.g., Graph
Convolutional Networks, Gated Graphs, Graph Attention
Networks) on binary screening labels. In experiments,
GNNs significantly outperformed an MLP baseline: a GCN
achieved 65.4% balanced accuracy vs 55.0% for an MLP, and
detected nearly half of qualified candidates versus under
10% for the MLP . This highlights GNN strength in leveraging
relational structure and catching minority outcomes. Beyond
bipartite designs, large-scale industrial systems create vast
heterogeneous graphs. LinkedIn’s STAR system (2025 KDD)
integrates an industry-scale job-candidate graph (billions
of nodes/edges) with a transformer+GNN pipeline [5]. The
STAR model trains an LLM encoder on long profile/job text
and a GNN over the graph to augment signals, achieving

improved recommendation quality in A/B tests. In summary,
GNNs are favored for their ability to capture multi-hop
dependencies (e.g. shared skills or social connections) and
to mitigate cold-start by graph connectivity. Architectures
include GCN, GraphSAGE, GAT, and heterogeneous GNNs,
often combined with learned embeddings from text.

Beyond applied pipelines, there is also a rich graph-theoretic
foundation relevant to how we represent and reason over
CJM data. In automata theory and formal languages, labeled
directed graphs encode state transitions, and their structural
properties—such as uniqueness and bounds for admissible
edge labelings—affect the information capacity of a graph.
For example, one study [6] analyzed the number of possible
labelings in definite automata graphs, proving uniqueness
for strongly connected graphs over binary alphabets and
exponential upper bounds as the alphabet grows. These
insights extend naturally to applied ML: candidate-job
graphs are likewise labeled, directed, and multi-relational,
and their label sets (skills, roles, outcomes) govern the
graph’s ability to disambiguate paths and support expressive
message passing. Situating GNN design within such labeling
constraints provides a formal basis for using heterogeneous
graphs with typed edges, relation-specific attention
mechanisms, or edge-weight priors derived from domain
ontologies, ensuring the learned representations remain
both structured and interpretable.

Hybrid and Recommender Systems Approaches

Recommender-system techniques are widely applied to
CJM. Systems combine content-based filtering (matching
resume content to job content) with collaborative filtering
(using applicant-job interaction history) in hybrid models.
For example, hybrid designs might weight content similarity
alongside a user-item matrix factorization or k-nearest-
neighbors on historical applications. Others incorporate
knowledge graphs or ontologies (e.g. ESCO taxonomy) to
enrich profiles. Hybrid systems often include contextual
features: one review notes that adding geographic and
industry context to CF+content models improves match
accuracy Common algorithms used include matrix
factorization, k-NN, and knowledge-based inference. The
systematic review by Ertugrul and Bitirim found that content-
based, collaborative, hybrid, and knowledge-based filters
dominate the literature [3]. Evaluation metrics are drawn
from recommender and IR domains: precision@k, recall,
F1, NDCG, MAP, AUC, etc . Notably, hybrid models have been
reported to reduce false positives in candidate ranking and
to leverage both text embeddings and collaborative signals
for cold-start alleviation.

Collectively, the models reviewed in this section represent
the core algorithmic paradigms that define modern
candidate-job matching research. While each approach
differs in architecture, training objectives, and scalability,
they share the same ultimate goal—deriving a robust
semantic representation of both candidates and roles to
enable accurate and explainable matching.

Universal Library of Engineering Technology

Page | 24



Recent Advances in Machine Learning Algorithms for Candidate-Job Matching

Table 1 provides a comparative overview of the principal model families identified in the literature, summarizing their input
representations, architectural properties, advantages, limitations, and common evaluation metrics.

Table 1. Comparative overview of key algorithms and frameworks for candidate-job matching (CJM).

Model Category |Core Input Architecture Main Advantages |Limitations / Typical Eval
Representation Highlights Trade-offs Metrics
Traditional ML TF-IDF, bag-of- Linear/SVMV, Transparent, easy |Poor semantic Accuracy, F1,
words, handcrafted |Random Forest, to deploy coverage, heavy AUC
features XGBoost feature engineering
Transformer- Contextual text Bi-encoder / Cross- |Strong semantic High compute cost, |NDCG, MAP,
based NLP embeddings (BERT, |encoder understanding, low interpretability |MRR
SBERT, RoBERTa) multilingual
Siamese Networks |Sentence Dual-tower with Efficient retrieval, |Sensitive to margin |Top-K

(GRU/LSTM embeddings + triplet loss captures document|tuning; two-stage Accuracy, MRR

/Transformer sequential modeling structure design may add

heads) latency

Graph Neural Node/edge GCN, GraphSAGE, Models multi-hop |Needs labeled Balanced

Networks (GNNs) |embeddings GAT, heterogeneous |dependencies, relations; limited Accuracy,
(candidate-job-skill | GNN cold-start scalability on dense |Recall@K
graphs) resilience graphs

Hybrid / Text + interaction Content-based Personalized, Cold-start for Precision@K,

Recommender logs + Collaborative leverages new entities, data Recall @K,

Systems filtering behavioral data sparsity NDCG

LLM / Hybrid Long text, graph LLM encoder + Integrates global |Expensive inference, | AUC-ROC,

GNN-LLM Systems |structure graph propagation |context, flexible bias risk Fairness

zero-shot use metrics

RESULTS

Several recent studies report quantitative gains from modern
ML models over traditional baselines. We summarize key
findings:

Transformer Embedding Models: Fine-tuned
transformer encoders significantly outperform keyword
or static-embedding methods. For example, Kurek et
al. (2024) [8] evaluated a zero-shot MiniLM-based
recommendation model and achieved Top-100 accuracy
of 55.45% and Top-500 accuracy of 81.11%, surpassing
conventional ATS baselines. Similarly, the Resume2Vec
system (MDPI 2023) reported up to 15.85% higher
NDCG and 15.94% higher RBO compared to keyword
search [1].

Siamese vs. Cross-Encoder Models: Empirical
evidence continues to favor Siamese (bi-encoder)
architectures for large-scale recruitment pipelines
due to their strong balance of accuracy and scalability.
Recent work [4] introduced a modular Siamese
framework that systematically compares GRU, LSTM,
and Transformer sequential heads atop a multilingual
Sentence Transformer backbone, trained end-to-end
with triplet loss on real-world recruitment data. Among
the tested variants, the Transformer-based Siamese
model achieved a Mean Reciprocal Rank (MRR) of 0.979
and a Top-100 accuracy of 87.2%, outperforming both
traditional baselines and static embedding approaches.
Visualization of embedding spaces using t-SNE further

confirmed that self-attention mechanisms produced
tighter clustering of matching job-résumé pairs and
clearer separation of irrelevant ones. By contrast, cross-
encoder architectures—where job and résumé texts are
jointly encoded with cross-attention—typically yield
marginally higher per-pair accuracy but at a significant
computational cost, as they require re-encoding every
candidate-job combination. For large candidate pools,
this leads to quadratic scaling, making real-time retrieval
impractical. Consequently, most modern CJM systems
adopt a two-stage pipeline: an efficient Siamese bi-
encoder for initial retrieval, followed by a cross-encoder
ranker applied to the top-N matches. This hybrid design
preserves the high precision of cross-attention models
while maintaining the speed necessary for production-
scale candidate search.

Graph Neural Networks: The GNN-based approaches
report marked improvement in screening efficacy,
especially for the critical minority class of qualified
candidates. Frazzetto et al. (2025) found that a GCN
achieved 65.4% balanced accuracy on a resume screening
task, compared to 55.0% for a feed-forward MLP [2].
The GNN identified 48.9% of qualified candidates
versus only 8.5% for the MLP. These gains illustrate that
modeling the relational graph structure can uncover
subtler signals of fit that flat models miss. Industrial-
scale results (e.g. LinkedIn) are generally proprietary
but allude to improved candidate engagement and match
relevance when integrating GNNs [5].

Universal Library of Engineering Technology

Page | 25



Recent Advances in Machine Learning Algorithms for Candidate-Job Matching

¢ Hybrid Recommenders: Studies show that combining
content and collaborative information mitigates
typical recommender problems. For example, adding
geographical context and skill-skill relationships into
a content-based model yields higher recommendation
relevance [7]. The SLR by Ertugrul and Bitirim noted
extensive use of hybrid and knowledge-based techniques,
and reported that hybrid models tended to reduce false
positives in ranking compared to pure content filters [3].
Specific accuracy numbers vary by dataset, but hybrid
systems generally achieve higher precision and recall
metrics (e.g. 90%+ F1 on certain curated benchmarks)
than single-method baselines.

e Large Language Models (LLMs): While powerful, off-
the-shelf LLMs show mixed performance in CJM. An
internal study (Eightfold Al, 2025) compared various
LLMs (GPT variants, Claude, etc.) against a proprietary
supervised CJM model (“Match Score”) on 10,000
real candidate-job pairs. The domain-specific model
achieved ROC AUC of 0.85, outperforming the best

general LLM at AUC 0.77 . The LLMs also had larger
disparities in fairness metrics across demographic
groups. This suggests that while LLMs capture broad
language patterns, specialized fine-tuning on hiring
data yields more accurate and equitable matching.
Nonetheless, LLM-derived embeddings and outputs can
enhance existing pipelines if carefully managed.

Taken together, these results indicate that advanced ML
methods can substantially improve the quality of candidate-
job matching. Transformer embeddings and graph-based
models often lead to double-digit improvements in ranking
metrics . However, performance depends on data quality
and representation. Most studies emphasize that rigorous
evaluation (including human expert assessment) is necessary
to validate gains in real hiring scenarios.

Quantitative outcomes from recent studies are summarized
below. Figure 1 visualizes headline results across model
families on a common percentage scale to facilitate
comparison.

87.20% 85.00%
80 77.00%
65.40%
60
55.45% 55.00%
40
20
15.85%
0 .
Resume2Vec Kurek zero-shot  Siamese GCN (GNN)  MLP Baseline Domain CJM  Best General
ANDCG Top-100 Top-100 Balanced Acc  Balanced Acc AUC LLM AUC

Figure 1. CJM results from recent studies (2023-2025)

DISCUSSION

The surveyed methods exhibit complementary strengths
and weaknesses in the CJM context:

e Semantic Understanding (Transformer-based
models): Deep NLP models excel at capturing context and
meaning in text. They can detect synonymy and related
skills automatically, greatly improving matching over
keyword filters [1]. Their embeddings encode candidate
expertise holistically, accommodating varied resume
formats. However, they are large and opaque: BERT-
based models have millions of parameters, making them
slow to train and requiring GPU resources. Inference
can be costly for pairwise scoring. Interpretability is
a challenge - understanding why a model matched a
resume to a job often requires post-hoc explanation
techniques (e.g. attention visualization). Additionally,
fine-tuning requires substantial labeled data, and models

can inherit biases from training corpora . Mitigation
strategies (balanced training, fairness constraints) are
advised, as these systems will influence high-stakes
hiring outcomes.

e Efficiency and Scalability: In large organizations,
scalability is critical. Siamese encoder models alleviate
this by precomputing embeddings; a bi-encoder can
score millions of candidate-job pairs with simple vector
operations. Cross-encoders, despite higher accuracy on
single pairs, are usually restricted to filtering among
a few candidates. Industrial systems (e.g. the STAR
framework [5]) combine offline training of embeddings
with nearline serving for fresh data, achieving real-
time matching. GNN training on massive graphs can be
resource-intensive; approaches like inductive learning
and mini-batching of graph data are employed. The
LinkedIn STAR and other industry reports highlight
that a decoupled training scheme (train LLM and GNN

Universal Library of Engineering Technology

Page | 26



Recent Advances in Machine Learning Algorithms for Candidate-Job Matching

separately, then merge signals) provides a practical
trade-off .

¢  Graph Structured Learning: GNNs offer rich relational
reasoning but introduce complexity. Constructing
meaningful graphs (defining nodes and edges) requires
domain knowledge (e.g. skill ontologies) and sometimes
external data sources (social links, job taxonomies).
While GNNs can improve minority candidate detection
[2], they make interpretability harder: understanding
which graph connections led to a high score is nontrivial.
Nonetheless, messages passing in GNNs can be analyzed
or visualized to some extent, and the structure itself
(e.g. shared skill neighbors) provides intuitive cues.
Moreover, GNNs can mitigate cold-start by linking new
candidates through attribute nodes (skills, education) to
existing job/people networks.

¢ Hybrid Recommenders: Combining multiple signal
types often yields robustness. For example, adding
content similarity (resumes < jobs) to collaborative
signals (co-application patterns) can improve recall
without sacrificing precision [7]. Hybrid models can
be more interpretable if built with components like
weighted linear combinations of scores. They also allow
modular updates: one can swap in a new text model or
a new collaborative module independently. However,
tuning and integrating heterogeneous methods can be
complex. Cold-start remains a concern if neither content
nor history is available (e.g. brand-new skills or roles).

e Bias and Fairness: Recruitment systems must ensure
non-discrimination. The surveyed literature notes that
generic LLMs can inadvertently perpetuate gender or
racial bias learned from data . In contrast, supervised
models trained on curated hiring data (as in Match
Score) achieved near-equal impact ratios across
demographics. Interpretability tools (feature importance
in tree models, attention weights) can help diagnose bias
sources. Fairness-aware learning algorithms and bias
audits are recommended. Additionally, hybrid systems
can incorporate fairness constraints explicitly. Ethical
deployment guidelines suggest combining quantitative
fairness evaluation with human oversight.

¢ Interpretability: Simple models (logistic regression,
decision trees) allow direct attribution of matches
to skill overlaps or historical evidence. Deep models
require auxiliary explanation methods (e.g. LIME, SHAP).
Explainability is particularly important in HR to justify
decisions to stakeholders. Recent work on explainable
person-job recommendation (outside our date range)
points to generating natural-language rationales or
highlighting key resume sections as interpretability
aids. Incorporating such explainers into CJM pipelines is
an open area for future work.

Challenges: Despite advancements, gaps remain. No gold-
standard public datasets exist, hampering benchmark

comparisons. Many systems are proprietary or tested on
specific corpora, so reported results may not generalize. Data
privacy concerns also limit sharing of real resumes. Moreover,
evolving job markets mean that models must adapt to new
skills and roles; continuous learning pipelines are needed.
Finally, candidate preferences and multi-objective matching
(culture fit, career goals) are still underexplored dimensions
beyond raw skill alignment.

CONCLUSION

In the last five years, candidate-job matching has transitioned
from rule-based systems to sophisticated ML-driven pipelines.
Transformer encoders, GNNs, and hybrid recommenders now
underpin the state-of-the-art. These methods offer markedly
better matching accuracy and relevance than traditional
approaches . They capture semantic and relational nuances
in ways that keyword matching cannot. At the same time,
these gains must be weighed against practical and ethical
considerations. Ensuring model interpretability, fairness, and
scalability is essential for responsible deployment. Domain-
specific fine-tuning and bias auditing are particularly
important when using large language models in hiring
contexts . Going forward, we expect continued integration of
pre-trained language models and graph techniques, alongside
hybrid designs that leverage diverse data sources. Open
challenges include creating shared evaluation frameworks,
improving transparency, and balancing personalization with
equity. Overall, the recent advances make automated CJM a
powerful tool to assist recruiters - provided its limitations
are recognized and mitigated.

REFERENCES

1. Bevara, R.VK, Mannuru, N.R., Karedla, S.P, Lund,
B, Xiao, T, Pasem, H., & Dronavalli S.C. (2023).
Resume2Vec: Transforming Applicant Tracking Systems
with Intelligent Resume Embeddings for Precise
Candidate Matching. Electronics, 14(4):794. https://doi.
org/10.3390/electronics14040794 .

2. Frazzetto, P, Ul Haq, M.U, Fabris, F, & Sperduti, A.
(2025). Graph Neural Networks for Candidate-Job
Matching: An Inductive Learning Approach. Data Science
and Engineering. https://doi.org/10.1007/s41019-025-
00293-y

3. Ertugrul, D.C., & Bitirim, S. (2025). Job recommender
systems: A systematic literature review, applications,
open issues, and challenges. Journal of Big Data, 12:140.
https://doi.org/10.1186/s40537-025-01173-y .

4. ‘Lepicki, M., Latkowski, T, Antoniuk, I., Bukowski, M.,
Swiderski, B. Baranik, G., Nowak, B. Zakowicz, R,
Dobrakowski, t.., Act, B., & Kurek, J. (2025). Comparative
Evaluation of Sequential Neural Network (GRU, LSTM,
Transformer) Within Siamese Networks for Enhanced
Job-Candidate Matching in Applied Recruitment
Systems. Applied Sciences, 15(11), 5988. https://doi.
org/10.3390/app15115988

Universal Library of Engineering Technology

Page | 27



Recent Advances in Machine Learning Algorithms for Candidate-Job Matching

5. Liu, P, He, S, Shen, ]., Borisyuk, F,, Hewlett, D., & others Comprehensive Review on Machine Learning-Based
(2025). A Scalable and Efficient Signal Integration Job Recommendation Systems. International Journal on
System for Job Matching. In KDD 2025: Proceedings of Robotics, Automation and Sciences, 7(2), 36-55. (Open
the 31st ACM SIGKDD Conference on Knowledge Discovery Access) .
and Data Mining . B

Kurek, ]., Latkowski, T, Bukowski, M. Swiderski,

6. Ishchenko, R.A. Number of Labelings of Definite B, Lepicki, M., Baranik, G. et al. (2024). Zero-Shot
Automata Graphs. Moscow Univ. Math. Bull. 77,102-107 Recommendation Al Models for Efficient Job-Candidate
(2022). https://doi.org/10.3103/50027132222020048 Matching in Recruitment Process. Applied Sciences,

7. Yap, RE., Haw, S.C, & Al-Juboori, S. (2025). A 14(6):2601. https://doi.org/10.3390/app14062601.

Copyright: © 2025 The Author(s). This is an open access article distributed under the Creative Commons Attribution License,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Universal Library of Engineering Technology Page | 28



