Universal Library of Engineering Technology Research Article

ISSN: 3064-996X | Volume 2, Issue 4
Open Access | PP: 87-92
DOI: https://doi.org/10.70315 /uloap.ulete.2025.0204015

Universal Library Open Access Publications LLC

Methods and Tools for Developing Collaborative Applications Based
on CRDT Types with User Conflict Resolution

Kostadin Almishev

Against the background of the rapid expansion of the segment of collaborative software solutions, fueled by the transition to
hybrid employment formats and the general digital transformation, the problem of ensuring data consistency in distributed
systems is coming to the fore as a fundamental scientific and engineering task. Classical strict consistency schemes are in
conflict with the requirements of high availability and fault tolerance, which directly follows from the limitations of the
CAP theorem. Conflict-free replicated data types (CRDTSs) represent a constructive response to this challenge by providing
strict final consistency (SEC) without centralized coordination. The purpose of the research is to systematize and analyze
approaches and tools for building collaborative applications based on CRDT, as well as to formulate a multi-level model for
resolving semantic conflicts that arise at the level of user intentions. Methodologically, the work is based on a systematic
review of academic publications, a comparative study of the leading CRDT libraries (Yjs, Automerge) and a content analysis
of industry reports. A comprehensive analysis of the theoretical foundations of CRDT, their practical incarnations, and
existing conflict resolution strategies has shown the insufficiency of automatic mechanisms for handling semantic collisions.
In response, a three—level Data—Logic-Representation architecture is proposed, which distinguishes between automatic
merging at the data level, logical identification of semantic contradictions and their resolution at the user interface layer
through adapted Ul/UX patterns. The findings indicate that this principle of organization increases the predictability of
the system’s behavior and makes collaboration more intuitive. The research materials are addressed to other researchers,
architects of distributed systems and software developers.

Keywords: CRDT, Collaborative Applications, Distributed Systems, Strict Final Consistency, Conflict Resolution, Semantic
Conflicts, Yjs, Automerge, User Interface, Local-First.

INTRODUCTION in a distributed system, it is impossible to simultaneously
guarantee strict data consistency, full availability, and
tolerance to network partitions [7, 8, 10]. Classical
architectures based on centralized DBMSs and locking to
preserve strict consistency inevitably reduce availability
under network failures—a trade-off incompatible with
expectations for modern applications, where offline-first
scenarios and instantaneous interface responsiveness
are required [9, 11]. In contrast, the paradigm of eventual
and remote forms of employment [4]—combined with the copsistency is applied, aiming for high availability at the cost
acceleration of digital transformation programs across f temporary divergence of replica states; however, early
industries [5, 6]. Specialized analytical reviews by leading incarnations of this approach were often ad hoc and error-
consulting companies confirm the long-term nature of these prone, generating unpredictable, hard-to-diagnose conflicts
trends and the formation of sustained demand for solutions and data states [10].

that ensure continuous, low-latency interaction of distributed
teams in real time [2, 3].

The contemporary digital economy demonstrates an
unprecedented intensification of technological reliance
on tools for collaborative activity. The global segment of
collaboration software maintains a stable upward trajectory:
as of 2024, its size is estimated at USD 36.1 billion [1]. The
driving forces are structural transformations of organizational
labor models—the large-scale institutionalization of hybrid

The resolution of this problem was provided by conflict-
free replicated data types (CRDT). CRDT are defined as
The growing need for collaborative platforms exacerbates data structures that support replication across multiple
a fundamental engineering dilemma formalized by the CAP nodes and allow independent, concurrent updates without
theorem (Consistency, Availability, Partition Tolerance): coordination between replicas [12, 14]. Their algebraic

Citation: Kostadin Almishev, “Methods and Tools for Developing Collaborative Applications Based on CRDT Types
with User Conflict Resolution”, Universal Library of Engineering Technology, 2025; 2(4): 87-92. DOI: https://doi.

org/10.70315 /uloap.ulete.2025.0204015.

www.ulopenaccess.com Page | 87

Methods and Tools for Developing Collaborative Applications Based on CRDT Types with User

Conflict Resolution

invariants ensure asymptotic convergence of the states of
all copies. This result is formally described by the model of
Strong Eventual Consistency (SEC): any two replicas that
have processed the same set of updates—even in different
orders—arrive at an identical state [10, 13].

However, the practical adoption of CRDT in industrial
solutions has revealed a substantial scientific and applied
gap. Although CRDT effectively eliminates conflicts at the
level of merging the data structures themselves (e.g.,, when
elements are added to a set concurrently), they do not
address the problem of semantic collisions arising from
contradictory user intentions [17]. A characteristic situation
is as follows: one participant edits the text of a paragraph
while another concurrently deletes it. From the CRDT
perspective, the merge is correct (for example, under a
deletion-wins strategy), but from the user perspective this
results in the loss of the product of their labor—a semantically
undesirable outcome. The existing literature presents the
mathematical foundations and algorithmic constructions
of CRDT in detail, but does not offer a systematic model for
identifying, representing, and resolving such user conflicts at
the application level.

The purpose of the study is to systematize and provide
an analytical review of methods and tools for building
collaborative applications based on CRDT and to present a
multilevel model for resolving semantic conflicts manifested
at the level of user intentions.

The author’s hypothesis is that the application of a
multilevel approach—with separation of tasks into the data
layer (automatic merging via CRDT), the application logic
layer (detection of semantic collisions within the application),
and the presentation layer (Ul/UX patterns that involve the
user in resolution)—makes it possible to create predictable,
robust, and intuitive systems for collaborative work.

The scientific novelty consists in proposing a
comprehensive model for resolving user conflicts in CRDT
systems, integrating theoretical principles of distributed
systems, analysis of contemporary development tooling, and
principles of human-computer interaction design.

MATERIALS AND METHODS

The study has an integral, interdisciplinary nature and
relies on a heterogeneous yet coherent methodology that
combines several analytical frameworks for a comprehensive
examination of the stated problem area.

As a theoretical foundation, a systematic literature review
was conducted. Peer-reviewed publications, materials
from leading computer science conferences (IEEE, ACM),
and Springer proceedings over the years were analyzed.
Priority was given to foundational works that establish the
formal properties of CRDT and the model of Strong Eventual
Consistency. In addition, recent studies on the formal
verification of CRDT algorithms and assessment of their

applicability in complex systems were taken into account,
which made it possible to delineate the current state and
boundaries of theoretical knowledge in this area.

To study the practical dimension of the topic—development
tooling—a comparative analysis was applied. Key libraries
that are de facto standards for building CRDT-based
collaborative applications, in particular Yjs and Automerge,
were examined. The analysis covered their architecture,
data models, stated synchronization mechanisms, and
API interfaces based on official technical documentation.
Performance was evaluated using the results of independent
benchmarks and comparative studies that consider operation
processing time, memory consumption, and the volume of
transmitted data.

To identify the macroeconomic and social context,
content analysis was employed. Analytical reports and
technology forecasts from leading consulting agencies,
including Gartner, McKinsey, and Deloitte, were reviewed.
This stage made it possible to capture the key trends—
growth of remote employment and acceleration of digital
transformation—which directly shape the requirements for
modern collaborative software and confirm the relevance of
the study.

RESULTS AND DISCUSSION

The foundation of fault-tolerant collaborative systems is
formed by two classes of CRDT that differ in their replication
strategy: state-based (state-oriented) and operation-based
(operation-oriented).

State-based CRDT, or Convergent Replicated Data Types,
achieve consistency through periodic transmission between
replicas of the full state of an object or its delta, after which
the local copy performs a merge. The formal guarantee of
convergence is provided by the requirement that the set of
reachable states forms a joint semi-lattice. From this follows
the existence of a least upper bound for any two states S1 and
S2, and the merge function computes the LUB (Least Upper
Bound). For correctness, it must be associative, commutative,
and idempotent [10, 15]. Due to these properties, CvRDT
is resilient to losses, duplicates, and arbitrary message
reordering: the system still converges to a single consistent
state.

Operation-based CRDT, or Commutative Replicated Data Types
(CmRDT), take the opposite path: instead of transmitting
states, replicas disseminate the operations (mutations)
that change local data. Convergence under this approach
requires stricter assumptions. First, the communication
environment must ensure delivery of each operation to all
replicas, typically while preserving causal order and without
duplication. Second, all concurrent operations (not related
by a happened-before relationship) must commute [10, 16].

The choice between these approaches constitutes a
significant architectural trade-off; the main differences and
the implications of such decisions are summarized in Table 1.

Universal Library of Engineering Technology

Page | 88

Methods and Tools for Developing Collaborative Applications Based on CRDT Types with User

Conflict Resolution

Table 1. Comparative analysis of the CvRDT and CmRDT approaches (compiled by the author based on [10, 15, 17, 20, 23]).

Criterion CvRDT (State-based) CmRDT (Operation-based)

Synchronization | Transfer of the full or delta state of the object. Transfer of individual operations (mutations).
mechanism

Network Minimal. Tolerant to message duplication, loss, and |High. Requires reliable message delivery (no
requirements |reordering. duplicates, with causal ordering).

Message size
using delta states (6-CRDTs).

Potentially large (entire state), but can be optimized|Small (a single operation), but may include

metadata to ensure ordering.

Implementation

complexity function.

Relatively low. Merge logic is encapsulated in the merge | High. Requires implementation of a complex and

reliable communication subsystem.

Type examples

LWW-Register (last-write-wins register).

G-Counter (growing counter), PN-Counter (counter|Op-based Counter, Op-based Observed-Remove
with increment/decrement), G-Set (growing set),|Set (set with removal).

The theoretical foundations of CRDT have received a mature
engineering implementation in a number of libraries;
among them, Yjs and Automerge have de facto established
an industry standard due to a combination of maturity,
performance, and broad ecosystem support.

Yjs is a high-performance CRDT implementation specifically
optimized for strict real-time scenarios. Architecturally, it
embodies an advanced operation-based model in which
operations are aggressively compacted, reducing network
and computational overhead. Its core is the Y.Doc object, a
container for a collection of shared types, including Y.Map,
Y.Array, and Y.Text. Synchronization between clients is
implemented via interchangeable transport providers (e.g.,
WebSocket or WebRTC), which makes the stack network-
agnostic [25]. An important feature is the Awareness protocol,
a separate channel for ephemeral information (cursor
positions, user statuses, etc.) that is not part of the document
and does not require persistence in the history [20]. Public
benchmarks demonstrate a substantial advantage of Yjs in
operation processing speed and memory efficiency, which
makes it preferable for high-load editors [21, 25].

Automerge follows a different paradigm. A document
is represented as a JSON-like structure, and the library,
unlike Yjs, preserves a complete, immutable history of all
modifications—in the spirit of Git. This design naturally
supports viewing the evolution of a document, branching,
and subsequent merging of versions. The architecture relies
on a high-performance Rust core (with portability, including
WebAssembly) and a Repo object that abstracts storage
management (storage adapters) and network interaction
(network adapters). The emphasis on immutable states and
a local-first approach makes Automerge a compelling choice
for systems in which auditability, strict versioning, and
reliable offline operation are critical [22].

The choice between the libraries is strategic and
predetermines the application architecture. Yjs is oriented
toward maximizing the speed of converging the current
state, which is an optimal option for highly dynamic
interfaces. Automerge essentially provides capability for
tasks with strict versioning requirements, but at the cost of

increased overhead. These architectural differences and the
corresponding performance trade-offs are illustrated in Fig. 1.

Yjs Architecture Automerge Architecture
))
— Application — Application
— —
— ——
— Y.Doc — Repository
-~
S EEE— EEE——
Common Data
Types (Y.Map, || Immutable History
Y.Array, and (Operation Log)
Y. Text)
S
Awareness
Protocol
—

Fig. 1. Architectural comparison diagram of Yjs and Automerge
(compiled by the author based on [21, 22, 25, 28, 29]).

As can be seen from Fig. 1, Yjs uses a central Y.Doc with
pluggable providers, whereas Automerge uses a Repo to
orchestrate documents (DocHandles), each of which contains
an immutable history of changes.

The mathematical properties of CRDT guarantee the syntactic
convergence of replicas; however, the interpretation of
user actions and domain semantics remain outside their
scope. This leads to a fundamental distinction between
two classes of conflicts. First, data-level conflicts: they are
eliminated automatically due to the algebraic invariants
of CRDT. For example, when different users concurrently
add different elements to a shared set, the resulting state
correctly includes both elements. Second, semantic conflicts:
a formally consistent union of operations can lead to a state
that contradicts the application logic or the intentions of

Universal Library of Engineering Technology

Page | 89

Methods and Tools for Developing Collaborative Applications Based on CRDT Types with User

Conflict Resolution

some participants. Because CRDT do not take into account
business rules and the execution context of operations, such
situations remain outside their model [17, 23, 24].

To partially mitigate semantic effects at the data level, several
standard—but limited in applicability—strategies are used.
The Last-Writer-Wins (LWW) register tags each write with
a timestamp and, under concurrency, selects the value with
the maximal timestamp; determinism is achieved at the
cost of silent information loss, when the result of one user’s
work is irreversibly overwritten by the result of another
[14]. In a multi-value (MV) register, all concurrent writes

are preserved, preventing data loss, but shifting subsequent
conflict resolution to the client application—via user choice
or embedded merge logic [14]. For sets, Add-Wins / Remove-
Wins rules are often used: in the Add-Wins variant, if the
addition of an element e and its removal occur concurrently,
the add operation takes precedence and e remains in the
set. Such a policy is natural for certain scenarios (e.g., a
shared shopping cart), but in other contexts it can lead to the
resurrection of elements that have already been deleted.

A consolidated comparison of these basic strategies is
provided in Table 2.

Table 2. Classification of strategies for automatic resolution of semantic conflicts (compiled by the author based on [11]).

Strategy Description Advantages Disadvantages

Last-Writer- |The operation with the highest|Determinism, ease of|Data loss (one user’s work is

Wins (LWW) |timestamp is applied. implementation. overwritten).

Multi-Value |All conflicting values are retained for|Guaranteed preservation of all|Requires explicit resolution on the

(MV) subsequent resolution. data. client side, complicates logic.

Add-Wins Set [Under concurrent add(e) and rmv(e)|Intuitive behavior for certain|May lead to unintended restoration
operations, add(e) takes precedence. |scenarios (e.g., shopping cart). |of deleted data.

The limitations of existing strategies necessitate a The architectural model of the system is organized as three

reconsideration of the initial premises and a transition from
a paradigm of conflict-freeness to a paradigm of meaningful
conflict handling. At its core lies the principle of capturing
user intent. A conflict is interpreted not as a failure, but as an
informative signal that multiple participants have performed
incompatible actions [19]. Instead of automatically
eliminating one of the versions, the system should retain
all conflicting operations and delegate the choice of a
substantive resolution either to the application or to the user
themself [18].

To impart methodological rigor to this approach, a
multilevel model is proposed that structures the process
of conflict handling in a collaborative environment. The
model distributes functions across the system levels—from
basic data synchronization to the interface level of user
interaction—thereby establishing clear boundaries of
responsibility and a coherent conflict-resolution scenario
(see Fig. 2).

Presentation
ayer

Logical Layer

Data
Warehouse

Network

Fig. 2. Diagram of the proposed multi-level model of conflict
resolution (compiled by the author based on [18, 19]).

interconnected layers—data, logic, and presentation. Their
coordinated functioning simultaneously ensures the formal
consistency of replicas and human-oriented resolution
of semantic contradictions that inevitably arise during
collaborative editing.

At the data layer;, CRDT types operate, in particular those
from the Yjs and Automerge libraries. Its only constraint is a
mathematically rigorous, deterministic aggregation of states
or operations between replicas that guarantees syntactic
consistency across all copies. This layer is fundamentally
separated from the problem domain: it does not encapsulate
business rules and, consequently, does not operate with the
semantics of the changes being made.

The logic layer is implemented in application code as an
observer of the stream of changes arriving from the data
layer. It interprets each operation in the context of the
current state and specified business constraints, identifying
semantic rather than syntactic collisions. For example, when
a text edit of a related task is received, the logic checks
whether the task has been deleted by that time. Upon
detecting a divergence of intentions, the logic layer neither
annuls operations nor performs automatic reconciliation;
instead, it forms a semantic conflict event, accumulating
metadata about the conflicting actions and their causal-
temporal structure. Such a decomposition shifts the choice
of the correct interpretation from the algorithmic plane to a
controlled user decision-making procedure.

The presentation layer is responsible for user interaction
and for materializing conflict events into understandable
interface objects. Upon receiving a signal about a semantic
conflict, the interface, first, delicately notifies the user—for
example, by contextually highlighting the relevant elements;

Universal Library of Engineering Technology

Page | 90

Methods and Tools for Developing Collaborative Applications Based on CRDT Types with User

Conflict Resolution

second, makes the nature of the divergence visually clear; and
third, provides tools for deliberate resolution. The practical
implementation relies on established Ul/UX patterns from
version control systems, primarily Git [14, 18]. Key methods
include parallel presentation of two alternative versions
with highlighted differences (side-by-side diff), three-way
merging with simultaneous display of the base, local, and
remote versions and the aggregated result in a central area
(three-way merge), as well as explicit choice operations—
accept my changes, accept remote changes, merge changes.
In addition, interactive editing of the final variant is
permissible, enabling the combination of fragments from
both versions and thereby reducing the loss of information
and context [20].

Consequently, the effectiveness of collaborative work is
determined not by the degree of smartness of automatic
heuristics, but by the quality of interaction design: how quickly,
transparently, and with minimal cognitive cost the user
understands the nature of the conflict and makes a decision.
The proposed stratification—CRDT-backed consistency at the
data level, detection of semantic contradictions at the logic
level, and human-centered resolution at the presentation
level—institutionalizes the separation of responsibility
between machine correctness and user judgment, increasing
the reliability and predictability of collective editing [17, 19].

In a Ul scenario for task management, a concurrent change
arises: User A renames a task, while User B synchronously
marks it as completed. Instead of forcing auto-resolution,
the system initiates a dialog offering an informed choice: (1)
Accept the new name and the status completed, (2) Keep
the previous name with the status completed, (3) Accept the
new name but keep the task incomplete.

CONCLUSION

The conducted study demonstrates that conflict-free
replicated data types (CRDT) constitute a reliable, strictly
formalized foundation for creating modern collaborative
systems with high availability and robust operation in
offline scenarios. Comparing theoretical principles with
practical implementations—using the examples of the Yjs
and Automerge libraries—has revealed the technological
maturity of the approach and the presence of a well-
developed ecosystem of tools for developers.

At the same time, the principal outcome of the work consists
in clarifying the limits of applicability of CRDT guarantees:
while ensuring convergence at the level of syntactic merging
of replicas, they do not eliminate semantic contradictions
generated by competing user intentions. Typical strategies
such as Last-Writer-Wins lead to the loss of meaningful data,
whereas Multi-Value merely shifts the burden of resolving
ambiguity to the application level.

Therefore, the stated objective has been achieved: methods
and means of CRDT-based development have been
systematized, and a multilevel scheme for handling user
conflicts has been proposed. The model, which decomposes

the process into three interconnected levels—data
(automated merging via CRDT), logic (detection of semantic
collisions), and presentation (UI/UX patterns for user
participation in resolution)—ensures effective handling of
semantic conflicts. This confirms the advanced hypothesis
that a structured approach increases the predictability,
reliability, and usability of collaborative applications.

The practical significance of the results lies in providing
architects and developers with a clear conceptual framework
for design: instead of searching for a universal automatic
conflict-resolution algorithm, the emphasis shifts toward
systems capable of promptly detecting semantic collisions
and offering the user intuitive means for their resolution.
Promising directions for further research include the formal
verification of protocols for resolving user conflicts and the
use of machine learning methods for predictive identification
of potential semantic collisions based on analysis of
behavioral patterns.

REFERENCES

1. Team Collaboration Software Market | Industry Report,
2030 | Grand View Research. Retrieved from: https://
www.grandviewresearch.com/industry-analysis/
team-collaboration-software-market (date accessed:
September 12, 2025).

2. Collaboration Software Market Size, Industry Report
2025-2034 | Global Market Insights. Retrieved from:
https://www.gminsights.com/industry-analysis/
collaboration-software-market (date accessed:
September 15, 2025).

3. Cloud Meeting and Team Collaboration Global Market
Forecast Report 2024-2029 with Key Findings from
UC and Al Decision-Maker Surveys, Hybrid Work
Trends and Investment Priorities | GlobeNewswire.
Retrieved from: https://www.globenewswire.com/
news-release/2025/06/25/3104840/28124 /en/
Cloud-Meeting-and-Team-Collaboration-Global-Market-
Forecast-Report-2024-2029-with-Key-Findings-from-
UC-and-Al-Decision-Maker-Surveys-Hybrid-Work-
Trends-and-Investment-Priorities.html (date accessed:
September 18, 2025).

4. Development in the Future of Work: 2025 Learning
Perspective [PDF] | McKinsey & Company. Retrieved
from: https://www.mckinsey.com/~ /media/
mckinsey/featured%20insights/people%20in%20
progress%Z20blog/learning%20trends%202025/2025_
mckinsey%?20learning%?20perspective.pdf (date
accessed: September 22, 2025).

5. McKinsey Global Institute. (2020, November 23). What's
next for remote work: An analysis of 2,000 tasks, 800
jobs, and nine countries. Retrieved from: https://www.
mckinsey.com/featured-insights/future-of-work/
whats-next-for-remote-work-an-analysis-of-2000-
tasks-800-jobs-and-nine-countries (date accessed:
September 26, 2025).

Universal Library of Engineering Technology

Page | 91

Methods and Tools for Developing Collaborative Applications Based on CRDT Types with User

Conflict Resolution

10.

11.

12.

13.

14.

Team Collaboration Software Market Size & Outlook,
2025-2033 | Straits Research. Retrieved from: https://
straitsresearch.com/report/team-collaboration-
software-market (date accessed: October 1, 2025).

Technology Trends Outlook 2024 [PDF] | McKinsey
& Company. Retrieved from: https://www.mckinsey.
com/~/media/mckinsey/business%20functions/
mckinsey%?20digital/our%20insights/the%20top%20
trends%20in%20tech%202024 /mckinsey-technology-
trends-outlook-2024.pdf (date accessed: October 7,
2025).

McKinsey & Company. (2025, July 22). McKinsey
technology trends outlook 2025 (The top trends in
tech). Retrieved from: https://www.mckinsey.com/
capabilities/tech-and-ai/our-insights/the-top-trends-
in-tech (date accessed: October 14, 2025).

The Future of Work | Deloitte. Retrieved from: https://
www.deloitte.com/global/en/services/consulting/
collections/future-of-work.html (date accessed: October
20, 2025).

Almeida, P. S. (2024). Approaches to conflict-free
replicated data types. ACM Computing Surveys, 57(2),
1-36.https://doi.org/10.1145/3695249.

Preguica, N., Baquero, C., & Shapiro, M. (2018). Conflict-
free replicated data types (CRDTs). In S. Sakr & A.
Zomaya (Eds.), Encyclopedia of Big Data Technologies
(pp- 1-10). Springerhttps://doi.org/10.1007/978-3-
319-63962-8_185-1.

Kaki, G., Prahladan, P, & Lewchenko, N. V. (2022).
RunTime-assisted convergence in replicated data types.
In Proceedings of the 43rd ACM SIGPLAN International
Conference on Programming Language Design and
Implementation (PLDI'22) (pp. 364-378). ACM.https://
doi.org/10.1145/3519939.3523724.

Braufle, F, Collins, P, & Ziegler, M. (2022). Computer
science for continuous data: Survey, vision, theory, and
practice of a computer analysis system. In F. Boulier,
M. England, T. M. Sadykov, & E. V. Vorozhtsov (Eds.),
Computer Algebra in Scientific Computing (CASC 2022)
(pp- 62-82). Springerhttps://doi.org/10.1007/978-3-
031-14788-3_5.

Mao, Y., Liu, Z., & Jacobsen, H.-A. (2022). Reversible
conflict-free replicated data types. In Proceedings of the
23rd ACM/IFIP International Middleware Conference
(Middleware ’22) (pp. 295-307). ACM.https://doi.
org/10.1145/3528535.3565252.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

Almeida, P. S. (2024). Approaches to conflict-free
replicated data types. ACM Computing Surveys, 57(2),
1-36.https://doi.org/10.1145/3695249.

Prymushko, A., et al. (2025). Efficilent state
synchronization in distributed electrical grid systems
using conflict-free replicated data types. IoT, 6(1),
6.https://doi.org/10.3390/i0t6010006.

Weidner, M, etal.(2022).Collabs: Aflexibleand performant
CRDT collaboration framework(arXiv:2212.02618).
https://doi.org/10.48550/arXiv.2212.02618.

Nieto Rodriguez, A. (2023). Conflict-free Replicated Data
Types have Abstract Data Types [PDF]. Retrieved from:
https://iris-project.org/pdfs/2023-phd-nieto.pdf (date
accessed: November 2, 2025).

Rault, P-A. Ignat, C.-L., & Perrin, 0. (2023). Access
control based on CRDTs for collaborative distributed
applications.In2023IEEE 22nd International Conference
on Trust, Security and Privacy in Computing and
Communications (TrustCom) (pp. 1369-1376). IEEE.
https://doi.org/10.1109/TrustCom60117.2023.00187.

Saquib, N., Krintz, C, & Wolski, R. (2022). Ordering
operations for generic replicated data types using
version trees. In Proceedings of the 9th Workshop on
Principles and Practice of Consistency for Distributed
Data (PaPoC °22) (pp. 39-46). ACM.https://doi.
org/10.1145/3517209.3524038.

Zhou, K., & Zhang, L. (2025). Step-wise formal
verification for LLM-based mathematical problem
solving(arXiv:2505.20869).https://doi.org/10.48550/
arXiv.2505.20869.

Zeller, P, Bieniusa, A. & Poetzsch-Heffter, A. (2014).
Formal specification and verification of CRDTs. In Formal
Techniques for Distributed Objects, Components, and
Systems (FORTE 2014) (pp. 33-48). Springerhttps://
doi.org/10.1007/978-3-662-43613-4_3.

Conflict-free Replicated Data Types have Abstract Data
Types [PDF] | IRIS Project. Retrieved from: https://iris-
project.org/pdfs/2023-phd-nieto.pdf (date accessed:
November 2, 2025).

Quick Start (Introduction) | Yjs Docs. Retrieved from:
https://beta.yjs.dev/docs/introduction/ (date accessed:
November 16, 2025).

Shared Types | Yjs Docs. Retrieved from: https://beta.
yjs.dev/docs/getting-started/working-with-shared-
types/ (date accessed: December 9, 2025).

Copyright: © 2025 The Author(s). This is an open access article distributed under the Creative Commons Attribution License,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Universal Library of Engineering Technology

Page | 92

