
Page | 87www.ulopenaccess.com

ISSN: 3064-996X | Volume 2, Issue 4

Open Access | PP: 87-92

DOI: https://doi.org/10.70315/uloap.ulete.2025.0204015

Universal Library of Engineering Technology Research Article

Methods and Tools for Developing Collaborative Applications Based 
on CRDT Types with User Conflict Resolution
Kostadin Almishev

Against the background of the rapid expansion of the segment of collaborative software solutions, fueled by the transition to 
hybrid employment formats and the general digital transformation, the problem of ensuring data consistency in distributed 
systems is coming to the fore as a fundamental scientific and engineering task. Classical strict consistency schemes are in 
conflict with the requirements of high availability and fault tolerance, which directly follows from the limitations of the 
CAP theorem. Conflict-free replicated data types (CRDTs) represent a constructive response to this challenge by providing 
strict final consistency (SEC) without centralized coordination. The purpose of the research is to systematize and analyze 
approaches and tools for building collaborative applications based on CRDT, as well as to formulate a multi-level model for 
resolving semantic conflicts that arise at the level of user intentions. Methodologically, the work is based on a systematic 
review of academic publications, a comparative study of the leading CRDT libraries (Yjs, Automerge) and a content analysis 
of industry reports. A comprehensive analysis of the theoretical foundations of CRDT, their practical incarnations, and 
existing conflict resolution strategies has shown the insufficiency of automatic mechanisms for handling semantic collisions. 
In response, a three—level Data—Logic-Representation architecture is proposed, which distinguishes between automatic 
merging at the data level, logical identification of semantic contradictions and their resolution at the user interface layer 
through adapted UI/UX patterns. The findings indicate that this principle of organization increases the predictability of 
the system’s behavior and makes collaboration more intuitive. The research materials are addressed to other researchers, 
architects of distributed systems and software developers.

Keywords: CRDT, Collaborative Applications, Distributed Systems, Strict Final Consistency, Conflict Resolution, Semantic 
Conflicts, Yjs, Automerge, User Interface, Local-First.

Abstract

Citation: Kostadin Almishev, “Methods and Tools for Developing Collaborative Applications Based on CRDT Types 
with User Conflict Resolution”, Universal Library of Engineering Technology, 2025; 2(4): 87-92. DOI: https://doi.
org/10.70315/uloap.ulete.2025.0204015.

Introduction
The contemporary digital economy demonstrates an 
unprecedented intensification of technological reliance 
on tools for collaborative activity. The global segment of 
collaboration software maintains a stable upward trajectory: 
as of 2024, its size is estimated at USD 36.1 billion [1]. The 
driving forces are structural transformations of organizational 
labor models—the large-scale institutionalization of hybrid 
and remote forms of employment [4]—combined with the 
acceleration of digital transformation programs across 
industries [5, 6]. Specialized analytical reviews by leading 
consulting companies confirm the long-term nature of these 
trends and the formation of sustained demand for solutions 
that ensure continuous, low-latency interaction of distributed 
teams in real time [2, 3].

The growing need for collaborative platforms exacerbates 
a fundamental engineering dilemma formalized by the CAP 
theorem (Consistency, Availability, Partition Tolerance): 

in a distributed system, it is impossible to simultaneously 
guarantee strict data consistency, full availability, and 
tolerance to network partitions [7, 8, 10]. Classical 
architectures based on centralized DBMSs and locking to 
preserve strict consistency inevitably reduce availability 
under network failures—a trade-off incompatible with 
expectations for modern applications, where offline-first 
scenarios and instantaneous interface responsiveness 
are required [9, 11]. In contrast, the paradigm of eventual 
consistency is applied, aiming for high availability at the cost 
of temporary divergence of replica states; however, early 
incarnations of this approach were often ad hoc and error-
prone, generating unpredictable, hard-to-diagnose conflicts 
and data states [10].

The resolution of this problem was provided by conflict-
free replicated data types (CRDT). CRDT are defined as 
data structures that support replication across multiple 
nodes and allow independent, concurrent updates without 
coordination between replicas [12, 14]. Their algebraic 



Page | 88Universal Library of Engineering Technology

Methods and Tools for Developing Collaborative Applications Based on CRDT Types with User 
Conflict Resolution

invariants ensure asymptotic convergence of the states of 
all copies. This result is formally described by the model of 
Strong Eventual Consistency (SEC): any two replicas that 
have processed the same set of updates—even in different 
orders—arrive at an identical state [10, 13].

However, the practical adoption of CRDT in industrial 
solutions has revealed a substantial scientific and applied 
gap. Although CRDT effectively eliminates conflicts at the 
level of merging the data structures themselves (e.g., when 
elements are added to a set concurrently), they do not 
address the problem of semantic collisions arising from 
contradictory user intentions [17]. A characteristic situation 
is as follows: one participant edits the text of a paragraph 
while another concurrently deletes it. From the CRDT 
perspective, the merge is correct (for example, under a 
deletion-wins strategy), but from the user perspective this 
results in the loss of the product of their labor—a semantically 
undesirable outcome. The existing literature presents the 
mathematical foundations and algorithmic constructions 
of CRDT in detail, but does not offer a systematic model for 
identifying, representing, and resolving such user conflicts at 
the application level.

The purpose of the study is to systematize and provide 
an analytical review of methods and tools for building 
collaborative applications based on CRDT and to present a 
multilevel model for resolving semantic conflicts manifested 
at the level of user intentions.

The author’s hypothesis is that the application of a 
multilevel approach—with separation of tasks into the data 
layer (automatic merging via CRDT), the application logic 
layer (detection of semantic collisions within the application), 
and the presentation layer (UI/UX patterns that involve the 
user in resolution)—makes it possible to create predictable, 
robust, and intuitive systems for collaborative work.

The scientific novelty consists in proposing a 
comprehensive model for resolving user conflicts in CRDT 
systems, integrating theoretical principles of distributed 
systems, analysis of contemporary development tooling, and 
principles of human–computer interaction design.

Materials and Methods
The study has an integral, interdisciplinary nature and 
relies on a heterogeneous yet coherent methodology that 
combines several analytical frameworks for a comprehensive 
examination of the stated problem area.

As a theoretical foundation, a systematic literature review 
was conducted. Peer-reviewed publications, materials 
from leading computer science conferences (IEEE, ACM), 
and Springer proceedings over the years were analyzed. 
Priority was given to foundational works that establish the 
formal properties of CRDT and the model of Strong Eventual 
Consistency. In addition, recent studies on the formal 
verification of CRDT algorithms and assessment of their 

applicability in complex systems were taken into account, 
which made it possible to delineate the current state and 
boundaries of theoretical knowledge in this area.

To study the practical dimension of the topic—development 
tooling—a comparative analysis was applied. Key libraries 
that are de facto standards for building CRDT-based 
collaborative applications, in particular Yjs and Automerge, 
were examined. The analysis covered their architecture, 
data models, stated synchronization mechanisms, and 
API interfaces based on official technical documentation. 
Performance was evaluated using the results of independent 
benchmarks and comparative studies that consider operation 
processing time, memory consumption, and the volume of 
transmitted data.

To identify the macroeconomic and social context, 
content analysis was employed. Analytical reports and 
technology forecasts from leading consulting agencies, 
including Gartner, McKinsey, and Deloitte, were reviewed. 
This stage made it possible to capture the key trends—
growth of remote employment and acceleration of digital 
transformation—which directly shape the requirements for 
modern collaborative software and confirm the relevance of 
the study.

Results and Discussion
The foundation of fault-tolerant collaborative systems is 
formed by two classes of CRDT that differ in their replication 
strategy: state-based (state-oriented) and operation-based 
(operation-oriented).

State-based CRDT, or Convergent Replicated Data Types, 
achieve consistency through periodic transmission between 
replicas of the full state of an object or its delta, after which 
the local copy performs a merge. The formal guarantee of 
convergence is provided by the requirement that the set of 
reachable states forms a joint semi-lattice. From this follows 
the existence of a least upper bound for any two states S1 and 
S2, and the merge function computes the LUB (Least Upper 
Bound). For correctness, it must be associative, commutative, 
and idempotent [10, 15]. Due to these properties, CvRDT 
is resilient to losses, duplicates, and arbitrary message 
reordering: the system still converges to a single consistent 
state.

Operation-based CRDT, or Commutative Replicated Data Types 
(CmRDT), take the opposite path: instead of transmitting 
states, replicas disseminate the operations (mutations) 
that change local data. Convergence under this approach 
requires stricter assumptions. First, the communication 
environment must ensure delivery of each operation to all 
replicas, typically while preserving causal order and without 
duplication. Second, all concurrent operations (not related 
by a happened-before relationship) must commute [10, 16].

The choice between these approaches constitutes a 
significant architectural trade-off; the main differences and 
the implications of such decisions are summarized in Table 1.



Page | 89Universal Library of Engineering Technology

Methods and Tools for Developing Collaborative Applications Based on CRDT Types with User 
Conflict Resolution

Table 1. Comparative analysis of the CvRDT and CmRDT approaches (compiled by the author based on [10, 15, 17, 20, 23]).

Criterion CvRDT (State-based) CmRDT (Operation-based)
Synchronization 
mechanism

Transfer of the full or delta state of the object. Transfer of individual operations (mutations).

Network 
requirements

Minimal. Tolerant to message duplication, loss, and 
reordering.

High. Requires reliable message delivery (no 
duplicates, with causal ordering).

Message size Potentially large (entire state), but can be optimized 
using delta states (δ-CRDTs).

Small (a single operation), but may include 
metadata to ensure ordering.

Implementation 
complexity

Relatively low. Merge logic is encapsulated in the merge 
function.

High. Requires implementation of a complex and 
reliable communication subsystem.

Type examples G-Counter (growing counter), PN-Counter (counter 
with increment/decrement), G-Set (growing set), 
LWW-Register (last-write-wins register).

Op-based Counter, Op-based Observed-Remove 
Set (set with removal).

The theoretical foundations of CRDT have received a mature 
engineering implementation in a number of libraries; 
among them, Yjs and Automerge have de facto established 
an industry standard due to a combination of maturity, 
performance, and broad ecosystem support.

Yjs is a high-performance CRDT implementation specifically 
optimized for strict real-time scenarios. Architecturally, it 
embodies an advanced operation-based model in which 
operations are aggressively compacted, reducing network 
and computational overhead. Its core is the Y.Doc object, a 
container for a collection of shared types, including Y.Map, 
Y.Array, and Y.Text. Synchronization between clients is 
implemented via interchangeable transport providers (e.g., 
WebSocket or WebRTC), which makes the stack network-
agnostic [25]. An important feature is the Awareness protocol, 
a separate channel for ephemeral information (cursor 
positions, user statuses, etc.) that is not part of the document 
and does not require persistence in the history [20]. Public 
benchmarks demonstrate a substantial advantage of Yjs in 
operation processing speed and memory efficiency, which 
makes it preferable for high-load editors [21, 25].

Automerge follows a different paradigm. A document 
is represented as a JSON-like structure, and the library, 
unlike Yjs, preserves a complete, immutable history of all 
modifications—in the spirit of Git. This design naturally 
supports viewing the evolution of a document, branching, 
and subsequent merging of versions. The architecture relies 
on a high-performance Rust core (with portability, including 
WebAssembly) and a Repo object that abstracts storage 
management (storage adapters) and network interaction 
(network adapters). The emphasis on immutable states and 
a local-first approach makes Automerge a compelling choice 
for systems in which auditability, strict versioning, and 
reliable offline operation are critical [22].

The choice between the libraries is strategic and 
predetermines the application architecture. Yjs is oriented 
toward maximizing the speed of converging the current 
state, which is an optimal option for highly dynamic 
interfaces. Automerge essentially provides capability for 
tasks with strict versioning requirements, but at the cost of 

increased overhead. These architectural differences and the 
corresponding performance trade-offs are illustrated in Fig. 1.

Fig. 1. Architectural comparison diagram of Yjs and Automerge 
(compiled by the author based on [21, 22, 25, 28, 29]).

As can be seen from Fig. 1, Yjs uses a central Y.Doc with 
pluggable providers, whereas Automerge uses a Repo to 
orchestrate documents (DocHandles), each of which contains 
an immutable history of changes.

The mathematical properties of CRDT guarantee the syntactic 
convergence of replicas; however, the interpretation of 
user actions and domain semantics remain outside their 
scope. This leads to a fundamental distinction between 
two classes of conflicts. First, data-level conflicts: they are 
eliminated automatically due to the algebraic invariants 
of CRDT. For example, when different users concurrently 
add different elements to a shared set, the resulting state 
correctly includes both elements. Second, semantic conflicts: 
a formally consistent union of operations can lead to a state 
that contradicts the application logic or the intentions of 



Page | 90Universal Library of Engineering Technology

Methods and Tools for Developing Collaborative Applications Based on CRDT Types with User 
Conflict Resolution

some participants. Because CRDT do not take into account 
business rules and the execution context of operations, such 
situations remain outside their model [17, 23, 24].

To partially mitigate semantic effects at the data level, several 
standard—but limited in applicability—strategies are used. 
The Last-Writer-Wins (LWW) register tags each write with 
a timestamp and, under concurrency, selects the value with 
the maximal timestamp; determinism is achieved at the 
cost of silent information loss, when the result of one user’s 
work is irreversibly overwritten by the result of another 
[14]. In a multi-value (MV) register, all concurrent writes 

are preserved, preventing data loss, but shifting subsequent 
conflict resolution to the client application—via user choice 
or embedded merge logic [14]. For sets, Add-Wins / Remove-
Wins rules are often used: in the Add-Wins variant, if the 
addition of an element e and its removal occur concurrently, 
the add operation takes precedence and e remains in the 
set. Such a policy is natural for certain scenarios (e.g., a 
shared shopping cart), but in other contexts it can lead to the 
resurrection of elements that have already been deleted.

A consolidated comparison of these basic strategies is 
provided in Table 2.

Table 2. Classification of strategies for automatic resolution of semantic conflicts (compiled by the author based on [11]).

Strategy Description Advantages Disadvantages
Last-Writer-
Wins (LWW)

The operation with the highest 
timestamp is applied.

Determinism, ease of 
implementation.

Data loss (one user’s work is 
overwritten).

Multi-Value 
(MV)

All conflicting values are retained for 
subsequent resolution.

Guaranteed preservation of all 
data.

Requires explicit resolution on the 
client side, complicates logic.

Add-Wins Set Under concurrent add(e) and rmv(e) 
operations, add(e) takes precedence.

Intuitive behavior for certain 
scenarios (e.g., shopping cart).

May lead to unintended restoration 
of deleted data.

The limitations of existing strategies necessitate a 
reconsideration of the initial premises and a transition from 
a paradigm of conflict-freeness to a paradigm of meaningful 
conflict handling. At its core lies the principle of capturing 
user intent. A conflict is interpreted not as a failure, but as an 
informative signal that multiple participants have performed 
incompatible actions [19]. Instead of automatically 
eliminating one of the versions, the system should retain 
all conflicting operations and delegate the choice of a 
substantive resolution either to the application or to the user 
themself [18].

To impart methodological rigor to this approach, a 
multilevel model is proposed that structures the process 
of conflict handling in a collaborative environment. The 
model distributes functions across the system levels—from 
basic data synchronization to the interface level of user 
interaction—thereby establishing clear boundaries of 
responsibility and a coherent conflict-resolution scenario 
(see Fig. 2).

Fig. 2. Diagram of the proposed multi-level model of conflict 
resolution (compiled by the author based on [18, 19]).

The architectural model of the system is organized as three 
interconnected layers—data, logic, and presentation. Their 
coordinated functioning simultaneously ensures the formal 
consistency of replicas and human-oriented resolution 
of semantic contradictions that inevitably arise during 
collaborative editing.

At the data layer, CRDT types operate, in particular those 
from the Yjs and Automerge libraries. Its only constraint is a 
mathematically rigorous, deterministic aggregation of states 
or operations between replicas that guarantees syntactic 
consistency across all copies. This layer is fundamentally 
separated from the problem domain: it does not encapsulate 
business rules and, consequently, does not operate with the 
semantics of the changes being made.

The logic layer is implemented in application code as an 
observer of the stream of changes arriving from the data 
layer. It interprets each operation in the context of the 
current state and specified business constraints, identifying 
semantic rather than syntactic collisions. For example, when 
a text edit of a related task is received, the logic checks 
whether the task has been deleted by that time. Upon 
detecting a divergence of intentions, the logic layer neither 
annuls operations nor performs automatic reconciliation; 
instead, it forms a semantic conflict event, accumulating 
metadata about the conflicting actions and their causal–
temporal structure. Such a decomposition shifts the choice 
of the correct interpretation from the algorithmic plane to a 
controlled user decision-making procedure.

The presentation layer is responsible for user interaction 
and for materializing conflict events into understandable 
interface objects. Upon receiving a signal about a semantic 
conflict, the interface, first, delicately notifies the user—for 
example, by contextually highlighting the relevant elements; 



Page | 91Universal Library of Engineering Technology

Methods and Tools for Developing Collaborative Applications Based on CRDT Types with User 
Conflict Resolution

second, makes the nature of the divergence visually clear; and 
third, provides tools for deliberate resolution. The practical 
implementation relies on established UI/UX patterns from 
version control systems, primarily Git [14, 18]. Key methods 
include parallel presentation of two alternative versions 
with highlighted differences (side-by-side diff), three-way 
merging with simultaneous display of the base, local, and 
remote versions and the aggregated result in a central area 
(three-way merge), as well as explicit choice operations—
accept my changes, accept remote changes, merge changes. 
In addition, interactive editing of the final variant is 
permissible, enabling the combination of fragments from 
both versions and thereby reducing the loss of information 
and context [20].

Consequently, the effectiveness of collaborative work is 
determined not by the degree of smartness of automatic 
heuristics, but by the quality of interaction design: how quickly, 
transparently, and with minimal cognitive cost the user 
understands the nature of the conflict and makes a decision. 
The proposed stratification—CRDT-backed consistency at the 
data level, detection of semantic contradictions at the logic 
level, and human-centered resolution at the presentation 
level—institutionalizes the separation of responsibility 
between machine correctness and user judgment, increasing 
the reliability and predictability of collective editing [17, 19].

In a UI scenario for task management, a concurrent change 
arises: User A renames a task, while User B synchronously 
marks it as completed. Instead of forcing auto-resolution, 
the system initiates a dialog offering an informed choice: (1) 
Accept the new name and the status completed, (2) Keep 
the previous name with the status completed, (3) Accept the 
new name but keep the task incomplete.

Conclusion
The conducted study demonstrates that conflict-free 
replicated data types (CRDT) constitute a reliable, strictly 
formalized foundation for creating modern collaborative 
systems with high availability and robust operation in 
offline scenarios. Comparing theoretical principles with 
practical implementations—using the examples of the Yjs 
and Automerge libraries—has revealed the technological 
maturity of the approach and the presence of a well-
developed ecosystem of tools for developers.

At the same time, the principal outcome of the work consists 
in clarifying the limits of applicability of CRDT guarantees: 
while ensuring convergence at the level of syntactic merging 
of replicas, they do not eliminate semantic contradictions 
generated by competing user intentions. Typical strategies 
such as Last-Writer-Wins lead to the loss of meaningful data, 
whereas Multi-Value merely shifts the burden of resolving 
ambiguity to the application level.

Therefore, the stated objective has been achieved: methods 
and means of CRDT-based development have been 
systematized, and a multilevel scheme for handling user 
conflicts has been proposed. The model, which decomposes 

the process into three interconnected levels—data 
(automated merging via CRDT), logic (detection of semantic 
collisions), and presentation (UI/UX patterns for user 
participation in resolution)—ensures effective handling of 
semantic conflicts. This confirms the advanced hypothesis 
that a structured approach increases the predictability, 
reliability, and usability of collaborative applications.

The practical significance of the results lies in providing 
architects and developers with a clear conceptual framework 
for design: instead of searching for a universal automatic 
conflict-resolution algorithm, the emphasis shifts toward 
systems capable of promptly detecting semantic collisions 
and offering the user intuitive means for their resolution. 
Promising directions for further research include the formal 
verification of protocols for resolving user conflicts and the 
use of machine learning methods for predictive identification 
of potential semantic collisions based on analysis of 
behavioral patterns.

References
Team Collaboration Software Market | Industry Report, 1.	
2030 | Grand View Research. Retrieved from: https://
www.grandviewresearch.com/industry-analysis/
team-collaboration-software-market (date accessed: 
September 12, 2025).

Collaboration Software Market Size, Industry Report 2.	
2025–2034 | Global Market Insights. Retrieved from: 
https://www.gminsights.com/industry-analysis/
collaboration-software-market (date accessed: 
September 15, 2025).

Cloud Meeting and Team Collaboration Global Market 3.	
Forecast Report 2024–2029 with Key Findings from 
UC and AI Decision-Maker Surveys, Hybrid Work 
Trends and Investment Priorities | GlobeNewswire. 
Retrieved from: https://www.globenewswire.com/
news-release/2025/06/25/3104840/28124/en/
Cloud-Meeting-and-Team-Collaboration-Global-Market-
Forecast-Report-2024-2029-with-Key-Findings-from-
UC-and-AI-Decision-Maker-Surveys-Hybrid-Work-
Trends-and-Investment-Priorities.html (date accessed: 
September 18, 2025).

Development in the Future of Work: 2025 Learning 4.	
Perspective [PDF] | McKinsey & Company. Retrieved 
from: https://www.mckinsey.com/~/media/
mckinsey/featured%20insights/people%20in%20
progress%20blog/learning%20trends%202025/2025_
mckinsey%20learning%20perspective.pdf (date 
accessed: September 22, 2025).

McKinsey Global Institute. (2020, November 23). What’s 5.	
next for remote work: An analysis of 2,000 tasks, 800 
jobs, and nine countries. Retrieved from: https://www.
mckinsey.com/featured-insights/future-of-work/
whats-next-for-remote-work-an-analysis-of-2000-
tasks-800-jobs-and-nine-countries (date accessed: 
September 26, 2025).



Page | 92Universal Library of Engineering Technology

Methods and Tools for Developing Collaborative Applications Based on CRDT Types with User 
Conflict Resolution

Team Collaboration Software Market Size & Outlook, 6.	
2025–2033 | Straits Research. Retrieved from: https://
straitsresearch.com/report/team-collaboration-
software-market (date accessed: October 1, 2025).

Technology Trends Outlook 2024 [PDF] | McKinsey 7.	
& Company. Retrieved from: https://www.mckinsey.
com/~/media/mckinsey/business%20functions/
mckinsey%20digital/our%20insights/the%20top%20
trends%20in%20tech%202024/mckinsey-technology-
trends-outlook-2024.pdf (date accessed: October 7, 
2025).

McKinsey & Company. (2025, July 22). McKinsey 8.	
technology trends outlook 2025 (The top trends in 
tech). Retrieved from: https://www.mckinsey.com/
capabilities/tech-and-ai/our-insights/the-top-trends-
in-tech (date accessed: October 14, 2025).

The Future of Work | Deloitte. Retrieved from: 9.	 https://
www.deloitte.com/global/en/services/consulting/
collections/future-of-work.html (date accessed: October 
20, 2025).

Almeida, P. S. (2024). Approaches to conflict-free 10.	
replicated data types. ACM Computing Surveys, 57(2), 
1–36.https://doi.org/10.1145/3695249.

Preguiça, N., Baquero, C., & Shapiro, M. (2018). Conflict-11.	
free replicated data types (CRDTs). In S. Sakr & A. 
Zomaya (Eds.), Encyclopedia of Big Data Technologies 
(pp. 1–10). Springer.https://doi.org/10.1007/978-3-
319-63962-8_185-1.

Kaki, G., Prahladan, P., & Lewchenko, N. V. (2022). 12.	
RunTime-assisted convergence in replicated data types. 
In Proceedings of the 43rd ACM SIGPLAN International 
Conference on Programming Language Design and 
Implementation (PLDI ’22) (pp. 364–378). ACM.https://
doi.org/10.1145/3519939.3523724.

Brauße, F., Collins, P., & Ziegler, M. (2022). Computer 13.	
science for continuous data: Survey, vision, theory, and 
practice of a computer analysis system. In F. Boulier, 
M. England, T. M. Sadykov, & E. V. Vorozhtsov (Eds.), 
Computer Algebra in Scientific Computing (CASC 2022) 
(pp. 62–82). Springer.https://doi.org/10.1007/978-3-
031-14788-3_5.

Mao, Y., Liu, Z., & Jacobsen, H.-A. (2022). Reversible 14.	
conflict-free replicated data types. In Proceedings of the 
23rd ACM/IFIP International Middleware Conference 
(Middleware ’22) (pp. 295–307). ACM.https://doi.
org/10.1145/3528535.3565252.

Almeida, P. S. (2024). Approaches to conflict-free 15.	
replicated data types. ACM Computing Surveys, 57(2), 
1–36.https://doi.org/10.1145/3695249.

Prymushko, A., et al. (2025). Efficient state 16.	
synchronization in distributed electrical grid systems 
using conflict-free replicated data types. IoT, 6(1), 
6.https://doi.org/10.3390/iot6010006.

Weidner, M., et al. (2022). Collabs: A flexible and performant 17.	
CRDT collaboration framework(arXiv:2212.02618).
https://doi.org/10.48550/arXiv.2212.02618.

Nieto Rodriguez, A. (2023). Conflict-free Replicated Data 18.	
Types have Abstract Data Types [PDF]. Retrieved from: 
https://iris-project.org/pdfs/2023-phd-nieto.pdf (date 
accessed: November 2, 2025).

Rault, P.-A., Ignat, C.-L., & Perrin, O. (2023). Access 19.	
control based on CRDTs for collaborative distributed 
applications. In 2023 IEEE 22nd International Conference 
on Trust, Security and Privacy in Computing and 
Communications (TrustCom) (pp. 1369–1376). IEEE.
https://doi.org/10.1109/TrustCom60117.2023.00187.

Saquib, N., Krintz, C., & Wolski, R. (2022). Ordering 20.	
operations for generic replicated data types using 
version trees. In Proceedings of the 9th Workshop on 
Principles and Practice of Consistency for Distributed 
Data (PaPoC ’22) (pp. 39–46). ACM.https://doi.
org/10.1145/3517209.3524038.

Zhou, K., & Zhang, L. (2025). Step-wise formal 21.	
verification for LLM-based mathematical problem 
solving(arXiv:2505.20869).https://doi.org/10.48550/
arXiv.2505.20869.

Zeller, P., Bieniusa, A., & Poetzsch-Heffter, A. (2014). 22.	
Formal specification and verification of CRDTs. In Formal 
Techniques for Distributed Objects, Components, and 
Systems (FORTE 2014) (pp. 33–48). Springer.https://
doi.org/10.1007/978-3-662-43613-4_3.

Conflict-free Replicated Data Types have Abstract Data 23.	
Types [PDF] | IRIS Project. Retrieved from: https://iris-
project.org/pdfs/2023-phd-nieto.pdf (date accessed: 
November 2, 2025).

Quick Start (Introduction) | Yjs Docs. Retrieved from: 24.	
https://beta.yjs.dev/docs/introduction/ (date accessed: 
November 16, 2025).

Shared Types | Yjs Docs. Retrieved from: 25.	 https://beta.
yjs.dev/docs/getting-started/working-with-shared-
types/ (date accessed: December 9, 2025). 

Copyright: © 2025 The Author(s). This is an open access article distributed under the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


