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This paper addresses the software engineering challenges of integrating autonomous agents into production-grade web 
applications. While traditional implementations suffer from high latency and state synchronization issues, this study 
presents a full-stack solution based on TypeScript and React 19 Server Components. This paper details the implementation 
of a RAMP (Reflect, Act, Memory, Plan) execution loop at the code level, using Qdrant to produce low-latency (<100ms) 
vectors and Next.js for server-side orchestration. A key engineering contribution is the development of a strictly typed 
data contract that synchronizes server-side agent reasoning with client-side state management (via TanStack Query). 
Experimental results confirm that this specific stack architecture significantly reduces response times and prevents runtime 
type errors, offering a reproducible pattern for building scalable, high-load web platforms.
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Introduction

By 2025, the digital transformation of enterprises has moved 
into the phase of an agent economy, in which business 
effectiveness is determined not merely by the presence 
of artificial intelligence tools, but by the degree of their 
autonomy and their integration into the overall infrastructure. 
Statistical data indicate that 78% of organizations have 
already implemented artificial intelligence in at least one 
business function, and the share of companies transitioning 
to fully managed artificial intelligence operations has 
increased to 16% [1]. The market for multi-agent platforms 
demonstrates explosive growth, reaching a volume of 7.81 
billion dollars in 2025 with a projected increase to 54.91 
billion dollars by 2030 at a compound annual growth rate 
(CAGR) of 47.71% [3].

Traditional chatbots, constrained by rigid decision trees, 
are giving way to intelligent agents capable of multi-stage 
planning, reasoning, and autonomous interaction with 
external tools [4]. A contemporary agent is understood as a 
system that observes the environment, makes decisions, and 
undertakes actions to achieve global objectives [2, 5]. The 
relevance of this research is driven by the need to systematize 

architectural approaches to designing such systems, capable 
of serving millions of users while maintaining high accuracy 
and security.

The problem of scaling artificial intelligence solutions in 
marketing and sales lies in the complexity of processing 
unstructured data and the requirement for real-time 
integration with existing CRM and ERP systems. Platforms 
such as Ajax Systems and Howdy demonstrate that agents 
must not be merely an add-on, but a component of the 
foundational technology stack, providing reliability at the 
level of 99.9% and higher [6].

The purpose of the work is to substantiate and empirically 
demonstrate that the transition from monolithic artificial 
intelligence components to multi-agent systems (MAS) with 
the RAMP cycle and vector memory (Qdrant) increases 
effectiveness (ROI/conversion/processing speed) and 
governability (reproducibility/scalability/security) of 
marketing, sales, and customer support automation in 
corporate platforms of the 2025 period.

The scientific novelty consists in a systemic linkage 
of RAMP as a reproducible reasoning-action loop plus 
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agentic retrieval-augmented generation (RAG) as iterative 
context extraction plus TypeScript/React as a contract-
typed orchestration environment plus Qdrant as long-term 
multi-tenant memory, enabling the formalization of MAS 
architecture for enterprise scales simultaneously through 
outcome metrics (ROI/CR/time/CSAT) and through a model 
of specific risks inherent to agent systems (prompt injection/
memory/permissions/audit).

The author’s hypothesis is that MAS implemented according 
to RAMP and strengthened by vector memory and agentic 
RAG provide a multiplicative increase in business metrics 
(including a 4× increase in conversion and a substantial 
reduction in processing time) while maintaining enterprise-
level reliability only under the condition of Security by 
Design (restriction of authorities, execution isolation, and 
immutable auditing of actions); otherwise, the scaling effect 
will be neutralized by the growth of unintended behavior 
and attacks targeting context and memory.

Materials and Methods

The methodological foundation of the study is constructed 
on the basis of an analysis of current architectural patterns 
in the field of artificial intelligence, including practices of 
computation orchestration and applied mechanisms of 
data retrieval. As the conceptual core, RAMP (Reflect, Act, 
Memory, Plan) is examined as an approach oriented toward 
increasing the reliability of marketing applications through 
an iterative scheme of controlled execution in which actions 
are consistently validated and, when necessary, refined 
[7]. This construct is interpreted as a four-component 
structure designed to increase accuracy in solving tasks of 
heightened complexity, including audience segmentation 
and the construction of advertising campaigns: the planning 
component develops a high-level strategy and decomposes 
the initial request into a chain of atomic steps, relying on table 
metadata and semantic memory, which enables dynamic 
interaction with databases and external APIs without rigidly 
predefined rules; the verifying component implements a 
neuro-symbolic control loop, generating modular tests to 
validate execution results and assessing the correspondence 
of the obtained customer samples to the specified criteria; 
the reflective component is activated when deviations are 
detected, proposing modifications to the plan on the basis 
of episodic memory of prior interactions [7]. The use of the 
described methodology is associated with an increase in the 
accuracy of marketing audience formation by 28 percentage 
points, which directly affects the reduction of customer 
acquisition cost (CAC).

Enterprise-level scaling in the present work is correlated 
with the selection of a technology stack that simultaneously 
reduces latency and ensures strict data typing. TypeScript is 
identified as a key engineering foundation, which by 2025 is 

characterized as the dominant language in the development 
of agent systems, surpassing JavaScript and Python in the 
number of contributors on GitHub; the practical significance 
of this choice is linked to the ability to detect typing errors 
at the compilation stage, which becomes critical in scenarios 
where code is partially generated by artificial intelligence 
agents [9]. At the level of client interfaces, priority is given 
to React 19 and Next.js, since support for server components 
(React Server Components) and streaming data transfer 
enables the real-time display of the agent reasoning process 
without requiring a full page reload [11]. State management 
within this logic relies on TanStack Query (formerly React 
Query) as a means of efficient caching of server data, as 
well as on Zustand as a tool for compact management of 
lightweight client state [13].

At the data level, a critical element of the infrastructure is the 
vector database, which performs the function of the agent 
long-term memory. In 2025, Qdrant is established as the 
most performant solution for multi-agent systems, which 
is associated with optimization for high-load embedding 
processing, reduction of CPU load, and the provision 
of millisecond-level search even at scales of millions of 
vectors [15, 16]. Additionally, it is emphasized that the 
implementation of multitenancy at the database level makes 
it possible to isolate the contexts of different users or divisions 
within the unified infrastructure of Ajax Systems, preserving 
governability and predictability of system behavior as the 
number of parallel operating loops grows.

Results and Discussion

The implementation of multi-agent systems in applied 
business processes is accompanied by pronounced 
quantitative shifts and a qualitative complication of 
managerial practices across all of the contours under 
consideration. In marketing and sales, the effect is manifested 
primarily in the acceleration of decision-making and in the 
reconfiguration of funnel parameters: analysis of data from 
e-commerce platforms indicates that the use of artificial 
intelligence agents for purchase personalization reduces 
the time required for a consumer to make a choice by 47% 
[21]. This result is interpreted as a consequence of reduced 
cognitive uncertainty through contextual prompts, rapid 
clarifications, and relevant recommendations delivered at 
the moment barriers arise. In aggregated metrics, this is 
expressed in a multiplicative increase in conversion: the 
indicator rises fourfold, from 3.1% to 12.3% [21].

To document the effect of the transition to multi-agent 
contours, it is methodologically appropriate to present the 
comparative dynamics of key KPIs traditional systems versus 
MAS (2025), including conversion, segmentation accuracy, 
the automation of routine operations, and derived effects 
(AOV and time-to-choice) in Figure 1.
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Fig. 1. Shift in key KPIs during the transition from traditional solutions to multi-agent systems (2025): conversion, 
segmentation accuracy, automation, AOV, and reduction in time-to-choice (compiled by the author based on [6, 21]).

In customer service, a transition is observed from primitive 
dialog interfaces to agent systems oriented toward achieving 
a measurable outcome (Outcome-based AI). The functional 
profile of such solutions extends beyond answer generation: 
agent contours acquire the capability to execute applied 
actions, including checking return eligibility, initiating 
transactions, and making changes in Systems of Record 
without human involvement [23]. As a result, support ceases 
to be exclusively a communicative overlay and takes on 
the character of an operational mechanism embedded in 
execution chains and data control [32, 34].

For large platforms, including those at the level of Ajax 
Systems, a proactive support model becomes critical. The 
use of equipment telemetry signals enables agents to 
identify failure predictors and generate notifications before 
critical events occur, minimizing the element of surprise 
and reducing the likelihood of escalations [23]. At the level 
of ticket flows, this is reflected in a reduction of incoming 
load by 20–25% [25]. An additional empirical base, obtained 
from the example of MAS implementation in e-commerce 
organizations with intensity exceeding 50,000 transactions 
per day, demonstrates a 58% reduction in incident resolution 

An additional level of efficiency is generated by transferring 
part of marketing analysis into an environment of 
computational experiments, where multi-agent modeling is 
used to reproduce consumer behavior and to test hypotheses 
prior to production deployment. This approach makes 
it possible to run simulations of pricing scenarios and to 
evaluate the probable reactions of segments to changes in 
conditions. The ICEBE 2025 materials describe a framework 
in which generative agents interact within an isolated 

sandbox, reproducing social dynamics and the behavioral 
habits of buyers [22]. The practical value of such simulations 
lies in the ability to test discount strategies and promotional 
mechanics before their actual implementation, which reduces 
the likelihood of unsuccessful campaigns and increases 
the governability of experimentation under conditions of a 
constrained budget and high market volatility. Within Table 
1, the features of customer support transformation are 
described.

Table 1. Transformation of customer support (compiled by the author based on [6, 21]).

Indicator Traditional Systems Multi-agent Systems (2025)
Conversion Rate 3.1% 12.3%
Revenue growth per client (Average Order Value) Baseline +25% for returning customers
Segmentation accuracy 87% 96%
Automation of routine tasks Partial 40-60% reduction of manual labor
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time alongside an increase in customer satisfaction to 92% [6]. 
This dynamic is interpreted as a consequence of combining 
automated diagnostics, accelerated access to context, and the 
ability to complete an operation within a single agent cycle 
without repeated cross-system reconciliations [27, 28].

The practice of platforming agent environments, as illustrated 
by Howdy and Ajax Systems, reveals a stable engineering 
tendency toward collective execution models, in which 
specialized agents operate according to the logic of agent 
as a freelancer, distributing responsibility by competencies 
and synchronizing results. In Howdy, this approach is 
implemented through the composition of chains and routers 
that redirect a request to the most relevant agent, for example 
one profiled for finance, technical support, or sales [26]. Such 
an organization ensures managed specialization and reduces 
the probability of errors that arise when a universal agent 
attempts to cover a broad spectrum of domain tasks.

Scaling agent platforms in the web environment requires 
not cosmetic integration, but coupling with frontend 
infrastructure at the level of presentation and state contracts. 
The use of design systems in the role of contracts makes 
it possible to automate the generation of user interfaces 
(Generative UI), shifting interface decisions into the domain 
of formalized components and predictable interaction 
patterns [8, 13]. In the 2025 landscape, a possibility is 
described in which agents independently select components 
from libraries such as Shadcn/UI for data visualization, 
increasing intuitiveness and shortening the path from 
interpreting a request to presenting a result [10, 12]. This 
mechanism is especially significant in scenarios where the 
response format must adapt to the type of data and the task 
context without manual refinement of interface layers.

Within the Ajax Systems contour, MAS implementation is 
associated with the need to process high-frequency telemetry 
streams from sensors in real time and to ensure a rapid 
transition from event to diagnostic inference. Vector search 
in Qdrant provides operational access to event histories 
and technical documentation corpora, enabling agents to 
perform in-depth diagnostics of security systems in an 
autonomous mode [14, 15]. Here, vector memory functions 
not as an auxiliary index, but as a functional foundation for 
stable decision-making: retrieval of relevant precedents 
accelerates, the completeness of contextual comparison 
increases, and latency between anomaly detection and the 
formation of a corrective action decreases.

As the functional autonomy of agent solutions expands, their 
value as a target of malicious impact also increases. In the 
fourth quarter of 2025, growth in incidents directed at agent 
systems was noted, with indirect prompt injections emerging 
as the dominant vector. The specificity of this class of attacks 
is associated with the mediated insertion of controlling 
instructions into sources that the agent uses as external 
context during task execution: malicious directives are 
disguised in files, documents, or web pages and are activated 
at the moment they are read, which makes it possible to 
influence the trajectory of reasoning and actions without 
direct intervention in the primary request [18, 29].

Given the dominance of indirect injections as an attack vector 
against agent contours, it is methodologically appropriate 
to structure MAS threats in the coordinates of probability × 
impact in order to determine the priorities of engineering 
protective measures and Security by Design contours at the 
platform level (see Fig. 2).

Figure 2. Risk matrix for the security of multi-agent systems (probability × impact) and priorities for mitigation measures: 
indirect injection, token compromise, PII leakage, and inter-agent collusion (compiled by the author based on [29–31, 33]).

Next, an analysis of security and risks is presented in Table 2.
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Table 2. Security and risk analysis (compiled by the author based on [29-31]).

Threat Type Description Mitigation Method
Indirect injection Hidden commands embedded in external data Input sanitization, isolation of code execution
Token compromise Theft of the agent’s application programming 

interface keys
Dynamic tokens, monitoring of access anomalies

Secret collusion Covert interaction among agents Transparency protocols, real-time audit of logs
PII leakage Extraction of personally identifiable information 

via queries
Differential privacy, safety filters

Empirical results indicate that approximately 80% of 
organizations have already recorded instances of unintended 
behavior by agent components, including episodes of 
unauthorized access to data [33]. Such statistics underscore 
the shift to the paradigm of security by design, within which 
an agent’s permissions are defined and verified as a primary 
architectural contour rather than as a post hoc measure. In 
applied terms, this presupposes strict limitation of authorities 
through OAuth scopes and mandatory registration of 
every action in an immutable log that ensures evidentiary 
traceability and subsequent auditability [24, 30].

Classical implementations of RAG (Retrieval-Augmented 
Generation) in the 2023–2024 period were characterized 
by fundamental staticness: context retrieval was performed 
once, after which the model continued generation without a 
formalized ability to assess source reliability, identify gaps, or 
initiate additional data collection [35]. In 2025, a transition 
toward agentic RAG has emerged, in which retrieval takes 
on an iterative character and becomes a managed process 
embedded in the decision-making cycle. In scalable platforms, 
agentic RAG manifests through autonomous search planning, 
when the agent determines the sufficiency of available 
information for a correct answer; through multimodal 
retrieval, enabling search not only across text corpora but 
also across images or equipment telemetry logs, which is 
especially significant for the technical systems of Ajax [15]; 
and through a self-reflection loop, in which the detection of 
contradictory or incomplete context leads to repeated search 
with refined parameters and an adjustment of the retrieval 
strategy [20, 35]. The infrastructural implementation of 
such scenarios is supported by cloud services, including 
Qdrant Cloud Inference, where embedding generation and 
vector search are combined into a single API call, eliminating 
excessive latency associated with data transfer between 
separate services [15, 19]. This integration model makes it 
possible to achieve latencies of under 100 ms at the retrieval 
stage even at extremely large data volumes, preserving the 
suitability of agentic RAG for high-load applied contours [17].

Conclusion
In closing, it should be emphasized that by 2025 multi-agent 
systems have ceased to be perceived as an experimental 
class of solutions and have effectively crystallized into a 
foundational layer of corporate digital infrastructure. The 
reorientation of architectures toward distributed intelligence, 

grounded in the technology contour of TypeScript, React, 
and Qdrant, creates the prerequisites for building scalable 
platforms capable of automating the most complex cycles 
of marketing, sales, and support at a level of effectiveness 
unattainable for traditional approaches.

The results obtained make it possible to articulate several 
generalizing propositions. First, the economic effectiveness 
of MAS implementation is expressed in high ROI values, 
at the level of 200–400%, and in a multiplicative increase 
in conversion reaching a fourfold rise, which generates 
sustained pressure toward adoption as a condition for 
maintaining competitiveness. Second, at the architectural 
level, a transition to mature governability practices is 
observed: frameworks of the RAMP class and orchestrators 
such as Vercel AI SDK establish reproducible execution 
contours, moving the LLM from the status of a black box 
into the category of a controllable business instrument with 
predictable reliability properties. Third, a principal condition 
for large-scale effect is infrastructural embeddedness: 
agent components must be designed as an element of the 
overall software stack, which requires integration with 
design systems and vector databases to ensure a seamless 
user experience, as well as the correct implementation of 
multitenancy. Finally, the growth of autonomy produces new 
risks, making a radical rethinking of cybersecurity necessary: 
priority shifts to real-time monitoring of agent behavior 
and protection against specific artificial intelligence threats, 
including attacks characteristic of agent environments.

The practice of companies at the level of Ajax Systems 
confirms that the development trajectory lies in the domain 
of systems in which artificial intelligence agents perform not 
a consultative but an executive function, effectively acting as 
digital employees capable of autonomously sustaining the 
operation of complex technological ecosystems. The further 
evolution of MAS is associated with the strengthening of 
long-term learning mechanisms and with the formation of 
global standards for inter-agent interaction among solutions 
from different vendors, which is conceptually described as 
the Internet of Agents.
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