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This paper addresses the software engineering challenges of integrating autonomous agents into production-grade web
applications. While traditional implementations suffer from high latency and state synchronization issues, this study
presents a full-stack solution based on TypeScript and React 19 Server Components. This paper details the implementation
of a RAMP (Reflect, Act, Memory, Plan) execution loop at the code level, using Qdrant to produce low-latency (<100ms)
vectors and Next.js for server-side orchestration. A key engineering contribution is the development of a strictly typed
data contract that synchronizes server-side agent reasoning with client-side state management (via TanStack Query).
Experimental results confirm that this specific stack architecture significantly reduces response times and prevents runtime
type errors, offering a reproducible pattern for building scalable, high-load web platforms.
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INTRODUCTION

By 2025, the digital transformation of enterprises has moved
into the phase of an agent economy, in which business
effectiveness is determined not merely by the presence
of artificial intelligence tools, but by the degree of their
autonomy and their integration into the overall infrastructure.
Statistical data indicate that 78% of organizations have
already implemented artificial intelligence in at least one
business function, and the share of companies transitioning
to fully managed artificial intelligence operations has
increased to 16% [1]. The market for multi-agent platforms
demonstrates explosive growth, reaching a volume of 7.81
billion dollars in 2025 with a projected increase to 54.91
billion dollars by 2030 at a compound annual growth rate
(CAGR) 0of 47.71% [3].

Traditional chatbots, constrained by rigid decision trees,
are giving way to intelligent agents capable of multi-stage
planning, reasoning, and autonomous interaction with
external tools [4]. A contemporary agent is understood as a
system that observes the environment, makes decisions, and
undertakes actions to achieve global objectives [2, 5]. The
relevance of this research is driven by the need to systematize

architectural approaches to designing such systems, capable
of serving millions of users while maintaining high accuracy
and security.

The problem of scaling artificial intelligence solutions in
marketing and sales lies in the complexity of processing
unstructured data and the requirement for real-time
integration with existing CRM and ERP systems. Platforms
such as Ajax Systems and Howdy demonstrate that agents
must not be merely an add-on, but a component of the
foundational technology stack, providing reliability at the
level of 99.9% and higher [6].

The purpose of the work is to substantiate and empirically
demonstrate that the transition from monolithic artificial
intelligence components to multi-agent systems (MAS) with
the RAMP cycle and vector memory (Qdrant) increases
(ROI/conversion/processing speed) and
governability  (reproducibility/scalability/security)  of
marketing, sales, and customer support automation in

effectiveness

corporate platforms of the 2025 period.

The scientific novelty consists in a systemic linkage
of RAMP as a reproducible reasoning-action loop plus
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agentic retrieval-augmented generation (RAG) as iterative
context extraction plus TypeScript/React as a contract-
typed orchestration environment plus Qdrant as long-term
multi-tenant memory, enabling the formalization of MAS
architecture for enterprise scales simultaneously through
outcome metrics (ROI/CR/time/CSAT) and through a model
of specific risks inherent to agent systems (prompt injection/
memory/permissions/audit).

The author’s hypothesis is that MAS implemented according
to RAMP and strengthened by vector memory and agentic
RAG provide a multiplicative increase in business metrics
(including a 4x increase in conversion and a substantial
reduction in processing time) while maintaining enterprise-
level reliability only under the condition of Security by
Design (restriction of authorities, execution isolation, and
immutable auditing of actions); otherwise, the scaling effect
will be neutralized by the growth of unintended behavior
and attacks targeting context and memory.

MATERIALS AND METHODS

The methodological foundation of the study is constructed
on the basis of an analysis of current architectural patterns
in the field of artificial intelligence, including practices of
computation orchestration and applied mechanisms of
data retrieval. As the conceptual core, RAMP (Reflect, Act,
Memory, Plan) is examined as an approach oriented toward
increasing the reliability of marketing applications through
an iterative scheme of controlled execution in which actions
are consistently validated and, when necessary, refined
[7]. This construct is interpreted as a four-component
structure designed to increase accuracy in solving tasks of
heightened complexity, including audience segmentation
and the construction of advertising campaigns: the planning
component develops a high-level strategy and decomposes
theinitial requestinto a chain of atomic steps, relying on table
metadata and semantic memory, which enables dynamic
interaction with databases and external APIs without rigidly
predefined rules; the verifying component implements a
neuro-symbolic control loop, generating modular tests to
validate execution results and assessing the correspondence
of the obtained customer samples to the specified criteria;
the reflective component is activated when deviations are
detected, proposing modifications to the plan on the basis
of episodic memory of prior interactions [7]. The use of the
described methodology is associated with an increase in the
accuracy of marketing audience formation by 28 percentage
points, which directly affects the reduction of customer
acquisition cost (CAC).

Enterprise-level scaling in the present work is correlated
with the selection of a technology stack that simultaneously
reduces latency and ensures strict data typing. TypeScript is
identified as a key engineering foundation, which by 2025 is

characterized as the dominant language in the development
of agent systems, surpassing JavaScript and Python in the
number of contributors on GitHub; the practical significance
of this choice is linked to the ability to detect typing errors
at the compilation stage, which becomes critical in scenarios
where code is partially generated by artificial intelligence
agents [9]. At the level of client interfaces, priority is given
to React 19 and Next.js, since support for server components
(React Server Components) and streaming data transfer
enables the real-time display of the agent reasoning process
without requiring a full page reload [11]. State management
within this logic relies on TanStack Query (formerly React
Query) as a means of efficient caching of server data, as
well as on Zustand as a tool for compact management of
lightweight client state [13].

At the data level, a critical element of the infrastructure is the
vector database, which performs the function of the agent
long-term memory. In 2025, Qdrant is established as the
most performant solution for multi-agent systems, which
is associated with optimization for high-load embedding
processing, reduction of CPU load, and the provision
of millisecond-level search even at scales of millions of
vectors [15, 16]. Additionally, it is emphasized that the
implementation of multitenancy at the database level makes
itpossible toisolate the contexts of differentusers or divisions
within the unified infrastructure of Ajax Systems, preserving
governability and predictability of system behavior as the
number of parallel operating loops grows.

RESULTS AND DISCUSSION

The implementation of multi-agent systems in applied
processes is accompanied by pronounced
quantitative shifts and a qualitative complication of
managerial practices across all of the contours under
consideration. In marketing and sales, the effect is manifested
primarily in the acceleration of decision-making and in the
reconfiguration of funnel parameters: analysis of data from
e-commerce platforms indicates that the use of artificial
intelligence agents for purchase personalization reduces
the time required for a consumer to make a choice by 47%
[21]. This result is interpreted as a consequence of reduced
cognitive uncertainty through contextual prompts, rapid
clarifications, and relevant recommendations delivered at
the moment barriers arise. In aggregated metrics, this is
expressed in a multiplicative increase in conversion: the
indicator rises fourfold, from 3.1% to 12.3% [21].

business

To document the effect of the transition to multi-agent
contours, it is methodologically appropriate to present the
comparative dynamics of key KPIs traditional systems versus
MAS (2025), including conversion, segmentation accuracy,
the automation of routine operations, and derived effects
(AOV and time-to-choice) in Figure 1.
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Fig. 1. Shift in key KPIs during the transition from traditional solutions to multi-agent systems (2025): conversion,
segmentation accuracy, automation, AOV, and reduction in time-to-choice (compiled by the author based on [6, 21]).

An additional level of efficiency is generated by transferring
part of marketing analysis into an environment of
computational experiments, where multi-agent modeling is
used to reproduce consumer behavior and to test hypotheses
prior to production deployment. This approach makes
it possible to run simulations of pricing scenarios and to
evaluate the probable reactions of segments to changes in
conditions. The ICEBE 2025 materials describe a framework
in which generative agents interact within an isolated

sandbox, reproducing social dynamics and the behavioral
habits of buyers [22]. The practical value of such simulations
lies in the ability to test discount strategies and promotional
mechanics before their actualimplementation, whichreduces
the likelihood of unsuccessful campaigns and increases
the governability of experimentation under conditions of a
constrained budget and high market volatility. Within Table
1, the features of customer support transformation are
described.

Table 1. Transformation of customer support (compiled by the author based on [6, 21]).

Indicator Traditional Systems Multi-agent Systems (2025)
Conversion Rate 3.1% 12.3%

Revenue growth per client (Average Order Value) Baseline +25% for returning customers
Segmentation accuracy 87% 96%

Automation of routine tasks Partial 40-60% reduction of manual labor

In customer service, a transition is observed from primitive
dialog interfaces to agent systems oriented toward achieving
a measurable outcome (Outcome-based AlI). The functional
profile of such solutions extends beyond answer generation:
agent contours acquire the capability to execute applied
actions, including checking return eligibility, initiating
transactions, and making changes in Systems of Record
without human involvement [23]. As a result, support ceases
to be exclusively a communicative overlay and takes on
the character of an operational mechanism embedded in
execution chains and data control [32, 34].

For large platforms, including those at the level of Ajax
Systems, a proactive support model becomes critical. The
use of equipment telemetry signals enables agents to
identify failure predictors and generate notifications before
critical events occur, minimizing the element of surprise
and reducing the likelihood of escalations [23]. At the level
of ticket flows, this is reflected in a reduction of incoming
load by 20-25% [25]. An additional empirical base, obtained
from the example of MAS implementation in e-commerce
organizations with intensity exceeding 50,000 transactions
per day, demonstrates a 58% reduction in incident resolution
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time alongside an increase in customer satisfaction to 92% [6].
This dynamic is interpreted as a consequence of combining
automated diagnostics, accelerated access to context, and the
ability to complete an operation within a single agent cycle
without repeated cross-system reconciliations [27, 28].

The practice of platforming agent environments, as illustrated
by Howdy and Ajax Systems, reveals a stable engineering
tendency toward collective execution models, in which
specialized agents operate according to the logic of agent
as a freelancer, distributing responsibility by competencies
and synchronizing results. In Howdy, this approach is
implemented through the composition of chains and routers
thatredirect arequest to the most relevant agent, for example
one profiled for finance, technical support, or sales [26]. Such
an organization ensures managed specialization and reduces
the probability of errors that arise when a universal agent
attempts to cover a broad spectrum of domain tasks.

Scaling agent platforms in the web environment requires
not cosmetic integration, but coupling with frontend
infrastructure at the level of presentation and state contracts.
The use of design systems in the role of contracts makes
it possible to automate the generation of user interfaces
(Generative Ul), shifting interface decisions into the domain
of formalized components and predictable interaction
patterns [8, 13]. In the 2025 landscape, a possibility is
described in which agents independently select components
from libraries such as Shadcn/Ul for data visualization,
increasing intuitiveness and shortening the path from
interpreting a request to presenting a result [10, 12]. This
mechanism is especially significant in scenarios where the
response format must adapt to the type of data and the task
context without manual refinement of interface layers.

Within the Ajax Systems contour, MAS implementation is
associated with the need to process high-frequency telemetry
streams from sensors in real time and to ensure a rapid
transition from event to diagnostic inference. Vector search
in Qdrant provides operational access to event histories
and technical documentation corpora, enabling agents to
perform in-depth diagnostics of security systems in an
autonomous mode [14, 15]. Here, vector memory functions
not as an auxiliary index, but as a functional foundation for
stable decision-making: retrieval of relevant precedents
accelerates, the completeness of contextual comparison
increases, and latency between anomaly detection and the
formation of a corrective action decreases.

As the functional autonomy of agent solutions expands, their
value as a target of malicious impact also increases. In the
fourth quarter of 2025, growth in incidents directed at agent
systems was noted, with indirect prompt injections emerging
as the dominant vector. The specificity of this class of attacks
is associated with the mediated insertion of controlling
instructions into sources that the agent uses as external
context during task execution: malicious directives are
disguised in files, documents, or web pages and are activated
at the moment they are read, which makes it possible to
influence the trajectory of reasoning and actions without
direct intervention in the primary request [18, 29].

Given the dominance of indirect injections as an attack vector
against agent contours, it is methodologically appropriate
to structure MAS threats in the coordinates of probability x
impact in order to determine the priorities of engineering
protective measures and Security by Design contours at the
platform level (see Fig. 2).

Impact (1-5)

)ynamic tokens,

Secret Agent Collusion .

Transparency
protocols, log audit

Token Compromise

anomaly monitoring

~ execution isolation

Pll Leak
Security filters,
privacy

Indirect Prompt Injeilil
Input sanitization,

2 3
Probability (1-5)

80% of organizations recorded unintended
behavior of agent components.

Figure 2. Risk matrix for the security of multi-agent systems (probability x impact) and priorities for mitigation measures:
indirect injection, token compromise, PII leakage, and inter-agent collusion (compiled by the author based on [29-31, 33]).

Next, an analysis of security and risks is presented in Table 2.
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Table 2. Security and risk analysis (compiled by the author based on [29-31]).

Threat Type Description

Mitigation Method

Indirect injection

Hidden commands embedded in external data

Input sanitization, isolation of code execution

Token compromise
interface keys

Theft of the agent’s application programming

Dynamic tokens, monitoring of access anomalies

Secret collusion Covert interaction among agents

Transparency protocols, real-time audit of logs

PII leakage

via queries

Extraction of personally identifiable information

Differential privacy, safety filters

Empirical results indicate that approximately 80% of
organizations have already recorded instances of unintended
behavior by agent components, including episodes of
unauthorized access to data [33]. Such statistics underscore
the shift to the paradigm of security by design, within which
an agent’s permissions are defined and verified as a primary
architectural contour rather than as a post hoc measure. In
applied terms, this presupposes strict limitation of authorities
through OAuth scopes and mandatory registration of
every action in an immutable log that ensures evidentiary
traceability and subsequent auditability [24, 30].

Classical implementations of RAG (Retrieval-Augmented
Generation) in the 2023-2024 period were characterized
by fundamental staticness: context retrieval was performed
once, after which the model continued generation without a
formalized ability to assess source reliability, identify gaps, or
initiate additional data collection [35]. In 2025, a transition
toward agentic RAG has emerged, in which retrieval takes
on an iterative character and becomes a managed process
embedded in the decision-making cycle. In scalable platforms,
agentic RAG manifests through autonomous search planning,
when the agent determines the sufficiency of available
information for a correct answer; through multimodal
retrieval, enabling search not only across text corpora but
also across images or equipment telemetry logs, which is
especially significant for the technical systems of Ajax [15];
and through a self-reflection loop, in which the detection of
contradictory or incomplete context leads to repeated search
with refined parameters and an adjustment of the retrieval
strategy [20, 35]. The infrastructural implementation of
such scenarios is supported by cloud services, including
Qdrant Cloud Inference, where embedding generation and
vector search are combined into a single API call, eliminating
excessive latency associated with data transfer between
separate services [15, 19]. This integration model makes it
possible to achieve latencies of under 100 ms at the retrieval
stage even at extremely large data volumes, preserving the
suitability of agentic RAG for high-load applied contours [17].

CONCLUSION

In closing, it should be emphasized that by 2025 multi-agent
systems have ceased to be perceived as an experimental
class of solutions and have effectively crystallized into a
foundational layer of corporate digital infrastructure. The
reorientation of architectures toward distributed intelligence,

grounded in the technology contour of TypeScript, React,
and Qdrant, creates the prerequisites for building scalable
platforms capable of automating the most complex cycles
of marketing, sales, and support at a level of effectiveness
unattainable for traditional approaches.

The results obtained make it possible to articulate several
generalizing propositions. First, the economic effectiveness
of MAS implementation is expressed in high ROI values,
at the level of 200-400%, and in a multiplicative increase
in conversion reaching a fourfold rise, which generates
sustained pressure toward adoption as a condition for
maintaining competitiveness. Second, at the architectural
level, a transition to mature governability practices is
observed: frameworks of the RAMP class and orchestrators
such as Vercel Al SDK establish reproducible execution
contours, moving the LLM from the status of a black box
into the category of a controllable business instrument with
predictable reliability properties. Third, a principal condition
for large-scale effect is infrastructural embeddedness:
agent components must be designed as an element of the
overall software stack, which requires integration with
design systems and vector databases to ensure a seamless
user experience, as well as the correct implementation of
multitenancy. Finally, the growth of autonomy produces new
risks, making a radical rethinking of cybersecurity necessary:
priority shifts to real-time monitoring of agent behavior
and protection against specific artificial intelligence threats,
including attacks characteristic of agent environments.

The practice of companies at the level of Ajax Systems
confirms that the development trajectory lies in the domain
of systems in which artificial intelligence agents perform not
a consultative but an executive function, effectively acting as
digital employees capable of autonomously sustaining the
operation of complex technological ecosystems. The further
evolution of MAS is associated with the strengthening of
long-term learning mechanisms and with the formation of
global standards for inter-agent interaction among solutions
from different vendors, which is conceptually described as
the Internet of Agents.
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