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This article examines the comprehensive optimization of MLOps processes for high-load product recommendation systems, in 
which stringent latency SLAs and terabyte-scale embeddings coexist with rapid drift in user preferences and intense business 
pressure to maximize commercial KPIs. The relevance of the study stems from the fact that classical batch-oriented MLOps 
practices do not provide the required feature consistency, stable model quality, or predictability of revenue, conversion, 
and retention metrics under peak loads typical of e-commerce and media services. The study aims to develop a holistic 
engineering and product-oriented approach to the design of data, inference, and training architectures, encompassing a 
Feature Store with streaming aggregations, hierarchical parameter servers, algorithmic embedding compression, dynamic 
batching, and concurrent model execution, vector search over embeddings, as well as drift monitoring loops and continuous 
(online) training. The scientific contribution lies in integrating hardware-oriented optimizations and process-centric MLOps 
methodologies into a unified RecSys design standard that simultaneously improves throughput and reduces latency while 
maintaining recommendation quality and stabilizing key business metrics. The article is intended for data and MLOps 
engineers, recommendation system architects, and technical leaders of digital products and marketing teams.
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Introduction
In the contemporary landscape of e-commerce and online 
services, recommender systems have evolved from auxiliary 
navigation tools into a primary driver of revenue and user 
retention. According to existing studies, personalization 
based on machine learning algorithms accounts for up to 
35% of Amazon’s revenue and 80% of Netflix’s views [1]. 
In online retail, recommendations influence not only which 
items are purchased, but also campaign uplift, average order 
value, and the distribution of demand across categories and 
price segments. However, as models become deeper and 
more complex, transitioning from matrix factorization to 
transformers and graph neural networks, the requirements 
for their serving infrastructure increase exponentially.

Many such business applications are particularly tied to 
commercial processes such as digital merchandising, promo 
placement, coupon and loyalty mechanics, and remarketing. 
As a result, any degradation in model performance, feature 
uniformity, or latency will be immediately reflected in 
business metrics monitored by the commercial or marketing 
departments, such as click-through rate (CTR), conversion 
rate, revenue per session, and inventory turnover. MLOps 
processes for recommender systems cannot be viewed 

solely as a technical operations exercise; they must also 
directly support the reliability and controllability of business 
experiments.

The specifics of recommender systems under high load are 
characterized by a unique set of constraints that distinguish 
them from computer vision or NLP workloads. First, there are 
stringent latency Service Level Agreements (SLAs). Research 
indicates that an increase in system response latency of 
only 100 ms may lead to a 2.4% or more drop in conversion 
[2]. For systems serving millions of users, this implies that 
extremely complex computations (nearest-neighbor search, 
ranking thousands of candidates) must be performed within 
a 10–50 ms window.

Second, there is the problem of data scale. Modern DLRM 
architectures operate on categorical features (user IDs, item 
IDs) with cardinalities that can reach billions. This leads to 
embedding tables whose size reaches hundreds of gigabytes 
or even terabytes, exceeding the memory capacity (HBM) of 
even the most advanced accelerators (GPUs/TPUs) [3].

Third, there is environmental dynamism. Unlike image 
classification, where the concept of a cat is static, user 
preferences and item popularity change continuously. The 
phenomena of data and concept drift require the introduction 
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of continuous training or online learning processes, which 
pose nontrivial challenges for MLOps engineers in ensuring 
the stability and reproducibility of pipelines [4].

Classical MLOps practices, developed primarily for batch-
processing workloads, prove insufficient for real-time 
RecSys whose outputs are directly monetized. A standard 
train once per week – deploy cycle leads to models that fail 
to account for the latest user interactions, price changes, or 
campaign configuration, which is critical for session-based 
recommendation scenarios and short-lived promotions. 
Furthermore, there is the well-known problem of training-
serving skew, in which the feature generation logic in the 
offline environment (Spark/Pandas) diverges from that in the 
online environment (C++/Go/Java microservices), resulting 
in degradation of model quality metrics in production [5]. 
In commercial systems, this skew manifests as inconsistent 
prices and availability, incorrect segmentation and promo 
eligibility, and ultimately as fluctuations in conversion and 
revenue that business teams cannot explain.

Thus, the relevance of this study lies in the need to systematize 
disparate engineering and algorithmic optimization methods 
into a unified, coherent approach to building MLOps 
processes for high-load recommender systems.

The objective of this work is to develop theoretically 
grounded, practically applicable recommendations for 
optimizing the architecture and MLOps processes of product 
recommendation systems under high load, with an explicit 
focus on preserving and improving target business metrics 
(CTR, conversion, revenue per session, and retention) during 
traffic peaks and intensive marketing activity.

To achieve this objective, the following tasks are addressed:

Analysis of modern architectural patterns for managing 1.	
the lifecycle of recommendation models, including 
Feature Store and Model Registry.

Investigation of inference optimization methods, 2.	
including quantization, pruning, and dynamic batching, 
with assessment of their impact on latency and 
throughput metrics.

Comparative analysis of model serving tools (Triton 3.	
Inference Server, TensorFlow Serving) in the context of 
working with large embedding tables.

Development of strategies to combat data drift and 4.	
implementation of continuous training pipelines.

Assessment of the risks and limitations associated with 5.	
deploying high-frequency model updates in production 
environments.

The study’s scientific novelty lies in integrating hardware-
level optimizations (GPU and memory) with process-
oriented MLOps methodologies and explicitly linking 
them to business outcomes. While most works focus 
either exclusively on recommendation algorithms or on 
general MLOps issues, this article examines the synergy 

between the two domains. It analyzes how architectural 
decisions propagate to commercial KPIs. It proposes hybrid 
approaches, such as hierarchical parameter servers (HPS) 
combined with streaming Feature Stores, to minimize end-
to-end latency and to increase the stability and predictability 
of revenue-related metrics under high load.

Materials and Methods
The study is based on a Systematic Literature Review (SLR) 
conducted according to the PRISMA methodology. Sources 
were retrieved from the abstract databases Scopus and Web 
of Science, as well as from the digital libraries IEEE Xplore 
and ACM Digital Library. The sample included publications 
from 2020 to 2025 that match the following keywords: 
Recommender Systems, MLOps, High Load, Embedding 
Optimization, Concept Drift, and Inference Serving.

The analysis includes works published in peer-reviewed 
journals and A/A* level conference proceedings (such as KDD, 
RecSys, SIGMOD, OSDI, VLDB, NeurIPS), as well as technical 
reports from R&D units of major technology companies, 
including Meta, Google, NVIDIA, Alibaba, and ByteDance. A 
key requirement is that these reports describe architectures 
of real-world production systems, such as Monolith, Ekko, or 
HugeCTR. Additionally, experimental data or performance 
metrics are mandatory to enable quantitative evaluation of 
the proposed solutions.

Blog posts are excluded from consideration, as are works that 
analyze recommender systems solely from an algorithmic 
perspective, without addressing engineering aspects related 
to deployment, operation, and maintenance in production 
environments. In total, 21 key sources were selected, 
including fundamental works on DLRM architecture, studies 
on inference optimization, and concept drift management.

Several complementary analysis methods are applied in this 
work. Architectural analysis enables us to break down the 
overall Triton architecture, or a sub-part like the Feature 
Store, into functional modules to identify performance 
bottlenecks, and helps us analyze how each module fits into 
the overall architecture, and how they contribute to the 
latency, resource consumption, and reliability requirements 
of the system.

In addition, comparative (benchmarking) analysis is 
employed, involving the comparison of performance 
characteristics of different frameworks, for example, 
TensorFlow Serving and Triton, based on experimental data 
from the selected sources. This enables objective assessment 
of the advantages and limitations of alternative solutions in 
typical operational scenarios.

To describe and understand system organization, modeling 
is also used. Mermaid is employed as a formal notation to 
visualize data flows, server architectures, and CI/CD/CT 
processes. Such diagrams help systematize knowledge of the 
system’s structure and simplify the analysis of its scalability 
and integration points.
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Special attention is paid to trade-off analysis. A balance is 
assessed between recommendation accuracy, measured by 
AUC and NDCG metrics, and system-level characteristics such 
as response latency and memory consumption. This analysis 
is performed in the context of optimization techniques, 
including quantization and caching, to understand the 
degree to which model quality loss is acceptable in exchange 
for improved performance and infrastructure efficiency.

Results
Data Management Architecture: Feature Store as a 
Foundation of Consistency

In high-load recommender systems, data quality and access 
speed are decisive factors. One of the most acute problems 
is training-serving skew, divergence in feature distributions 
or feature computation logic between training and 
inference stages. This often occurs when training features 
are prepared via batch processes (e.g., Spark). In contrast, 
inference features are reimplemented in high-performance 
languages (e.g., C++, Go), which inevitably leads to bugs and 
inconsistencies [6].

In commercial product recommendation scenarios, 
this type of inconsistency directly impacts key business 
indicators. Misaligned feature computation between offline 
training and online serving manifests as outdated prices in 
recommendations, incorrect stock availability, or missing 
promotional attributes at inference time. For a high-traffic 
storefront, even a small fraction of recommendations built on 
stale or inconsistent features can lead to measurable drops 
in click-through rate, conversion, and average order value, as 
well as an increase in customer support incidents. Centralizing 
feature computation in a Feature Store, therefore, serves not 
only as an engineering control to manage technical debt but 
also as a mechanism to stabilize revenue and marketing 
campaign performance during peak load.

Dual Feature Store Architecture

To address this issue, the industry widely adopts the Feature 
Store pattern, which implements data abstraction through 
two physical stores under a unified logical interface [7]. 
The first store, the offline store (cold storage), is intended 

for storing historical data over long periods, up to months 
and years, and is used primarily for model training. CDP 
storage backends include a distributed file system (such 
as the Hadoop Distributed File System (HDFS) or Amazon 
Simple Storage Service (S3)), a columnar database (such 
as BigQuery or Snowflake), or a columnar storage format 
(such as Parquet). These storage backends should be able to 
scan high-velocity data and query terabytes of data. It is also 
important that the backend supports time-travel queries, 
which allow the state of features to be retrieved at arbitrary 
points in time to avoid future leakage.

The second store, the online store (hot storage), is oriented 
toward real-time operation and is responsible for providing 
feature vectors for model serving when handling online 
requests. In-memory databases such as Redis or RonDB, 
as well as low-latency NoSQL stores such as DynamoDB or 
Cassandra, are used at this level. The primary requirement 
is ultra-low latency for key-based read operations (point 
lookups).

Latency Optimization in the Online Store

Performance studies conducted on OpenMLDB and 
Hopsworks demonstrate that the choice of technology for 
the online store critically influences the overall latency 
of the recommendation service [8]. Traditional key-value 
stores (such as Redis) deliver high speed but can become 
bottlenecks when complex on-the-fly aggregations are 
required (for example, average order value over the last 10 
minutes).

In this regard, a promising direction is the use of specialized 
engines that support SQL-like queries over streaming data 
with just-in-time (JIT) compilation of query plans into 
machine code. For instance, the OpenMLDB architecture 
achieves latency below 5 ms at a throughput of 17k QPS due 
to optimized execution plans and caching [8]. This enables 
moving feature engineering logic out of application code 
and into the Feature Store itself, guaranteeing identical 
computations in both offline and online modes. The table 1 
shows a comparative analysis of Feature Store architectures 
for RecSys.

Table. 1. Comparative analysis of Feature Store architectures for RecSys.

Characteristic Feast Hopsworks Tecton OpenMLDB

Type Open Source (DIY) Platform (Enterprise/OSS) Managed Service Open Source (Optimized)

Offline Store Pluggable (S3, BQ, etc.) HopsFS / S3 Snowflake / Databricks Spark / HDFS

Online Store Redis, DynamoDB RonDB (MySQL Cluster) Dynamo DB / Redis In-memory optimized DB

Consistency Eventual Strong (within transactions) Eventual Strong

Streaming 
Aggregations

Via external engines 
(Flink)

Built-in Built-in Built-in (Optimized SQL)

Figure 1 illustrates the data flow in an MLOps pipeline that ensures feature consistency via a Feature Store.
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Fig. 1. End-to-End Feature Store Architecture.

The diagram shows how streaming data (RawEvents) are 
processed in real time, ingested into the online store for 
immediate use at inference time, and archived in the offline 
store for future retraining. The feature registry ensures 
that feature definitions are identical along both processing 
paths.

From a business perspective, the ability to compute features 
over streaming data with millisecond-level latency makes 
it possible to expose near-real-time signals to marketing 
and merchandising logic. Examples include session-level 
engagement scores, dynamic price sensitivity indicators, and 
short-term demand surges driven by campaigns or external 
events. When these features are consistently available both 
to training pipelines and to online serving, recommendation 
and ranking models can react within minutes rather than 
days to changes in user behavior or campaign configuration. 
Empirically, this shortens the feedback loop between 
marketing experiments and observable KPI shifts, enabling 
more aggressive A/B testing of promotion strategies without 
sacrificing user experience during traffic spikes.

The Problem of Embedding Scalability and 
Hierarchical Storage Systems

Modern recommender systems are based on models that 
use embeddings (dense vector representations) to encode 
sparse categorical features. Unlike computer vision (CNN) or 
natural language processing (Transformer) models, where 
dense computations (GEMM) dominate, DLRM architectures 
spend a substantial portion of their time on memory lookups 
[9].

GPU Memory Constraints

The problem arises because the size of embedding tables in 
industrial systems (e.g., Facebook, Google, Alibaba) can reach 
hundreds of gigabytes or tens of terabytes. This is due to the 
enormous number of users and items, as well as the use of 

combinatorial features (cross-features). Modern GPUs (such 
as NVIDIA A100 or H100) have limited memory capacity 
(40–80 GB), making it impossible to fit the entire model on a 
single device [10].

Traditional model parallelism (distributing a model across 
multiple GPUs) becomes economically inefficient at terabyte-
scale embeddings, since it requires hundreds of GPUs purely 
for parameter storage, while compute cores may remain 
underutilized.

Hierarchical Parameter Server (HPS)

A solution to this problem is adopting a hierarchical 
parameter server architecture. This approach, implemented 
for example in the NVIDIA Merlin HugeCTR framework, uses 
a multi-level storage hierarchy analogous to CPU memory 
hierarchies [11]. In the context of product recommendation, 
such an architecture is not only a technical optimization, 
but also a way to control unit economics: it allows keeping 
the most commercially essential entities (high-margin and 
high-traffic SKUs, active loyalty users, key promotional 
inventories) in the fastest memory tier, while offloading the 
long tail of the catalog to cheaper storage. As a result, the 
system can sustain the required recommendation quality 
and latency for revenue-critical segments without linear 
growth of accelerator count and infrastructure costs.

In the embedding storage hierarchy, the first level, the L1 
cache, resides in GPU memory and stores hot embeddings, that 
is, vectors corresponding to the most frequently requested 
IDs. Request distributions in recommender systems typically 
follow a power law: a relatively small fraction of objects, for 
example, around 20% of items, accounts for up to 80% of 
all views. Placing the corresponding embeddings in fast GPU 
memory (HBM) is critical for overall system performance, as 
it minimizes access latency for the most in-demand data.

The second level, the L2 cache, is located in the host’s main 
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memory (CPU RAM) and stores warm embeddings, that is, 
less popular but still regularly used vectors. Modern servers 
can be equipped with terabytes of RAM, enabling the storage 
of tables significantly larger than what fits in GPU memory. 
Access to these data occurs over PCIe or, in more specialized 
systems such as DGX, over high-speed interconnects like 
NVLink, providing an acceptable compromise between 
capacity and latency.

The third level, L3 storage, is represented by persistent 
storage based on solid-state drives (SSD), typically NVMe. 
This level holds cold embeddings, which are rarely accessed, 
as well as complete copies of feature tables. Although SSD 
access is substantially slower than GPU or main memory 
access, use of this level allows scaling the system to huge 
data volumes while retaining the ability to restore and 
periodically load rarely used vectors into faster cache levels 
as needed.

Analysis of the HPS architecture shows that it effectively 
hides the latency of accessing slower memory tiers through 
asynchronous prefetching and pipelining [12]. The HugeCTR 
system, integrated with Triton Inference Server, allows 
this hierarchy to be used transparently to the developer, 
automatically managing the movement of embeddings 
between levels based on access frequency.

For business stakeholders, this means that catalog growth 
and assortment rotation can proceed without proportional 
increases in serving costs. The ratio of infrastructure spend 
to incremental gross merchandise value (GMV) generated 
by recommendations becomes more favorable, particularly 
in markets with thin margins and frequent price changes. 
Moreover, explicit separation of hot and cold segments in the 
embedding hierarchy simplifies the design of differentiated 
commercial strategies, for example, more aggressive cross-
selling for fast-moving consumer goods versus more 
conservative exposure of long-tail items.

Algorithmic Optimization: Quantization and 
Budgeted Embeddings

In addition to hardware solutions, quantization is an effective 
way to reduce memory pressure. Converting embeddings 
from FP32 (32-bit floating-point) to FP16 or INT8 reduces 
memory consumption by a factor of 2–4. Study [9] shows 
that using mixed precision has a negligible effect on ranking 
metrics (AUC/NDCG) while substantially increasing memory 
bandwidth.

A more advanced method is the use of Budgeted Embedding 
Tables (BET) [13]. Instead of using a fixed vector 
dimensionality (e.g., d = 64) for all entities, BET dynamically 
assigns dimensionality depending on feature frequency. 
Popular items receive higher-dimensional vectors for better 
representational power, while rare items (the tail of the 
distribution) are encoded using lower-dimensional vectors. 
This allows significant model compression without losing 
information about essential entities.

Optimization of Real-Time Inference Processes

The inference stage has latency requirements, which are 
the most demanding of all stages since they determine the 
storefront, search, and personalization widgets that users 
see. During periods of high load, the server must handle 
thousands of concurrent requests with the lowest response 
time possible to avoid degrading click-through rate, 
conversion rate, and basket completion during peak traffic. 
In practice, this implies that optimizations at the inference 
layer must be evaluated not only in terms of queries per 
second, but also in terms of their impact on abandonment 
rates, session depth, and the stability of key commercial KPIs 
during large-scale campaigns.

Dynamic Batching

Processing each request individually (batch size = 1) is 
highly inefficient for GPUs, which are designed for massive 
parallel computations. Kernel launch overhead and data 
transfer costs may exceed the time required for practical 
computation.

Dynamic batching addresses this issue by aggregating 
incoming requests into a buffer over a short time window 
(e.g., 1–5 ms) or until a predefined batch size is reached. The 
resulting batch is then sent to the GPU as a single tensor [14]. 
This approach dramatically increases system throughput at 
the cost of a slight and controllable increase in per-request 
latency. In e-commerce, dynamic batching is a form of traffic 
shaping. When the batching window and maximum batch 
sizes are set correctly, this can reduce latency by several 
milliseconds, while providing a much larger increase in 
throughput and temporarily reducing the risk of timeouts 
or downgrades at campaign start. This allows for more 
aggressive marketing, such as flash sales and coupon pushes, 
as well as remarketing banners.

Tool analysis demonstrates that NVIDIA Triton Inference 
Server provides one of the most advanced implementations 
of dynamic batching. Unlike TensorFlow Serving, which 
also supports this feature, Triton enables more flexible 
configuration of queue priorities and timeout strategies, and 
supports heterogeneous batches (combining requests for 
different versions of the same model) [15].

Comparative Analysis of Inference Servers

The choice of inference server is a critical architectural 
decision. In current practice, several key distinctions among 
popular model-serving solutions can be identified.

TensorFlow Serving (TFS) is the de facto standard in the 
TensorFlow ecosystem and provides high performance 
for TF-based models, including through XLA compilation 
optimizations [16]. However, support for models developed 
in other frameworks (PyTorch, ONNX) is limited and often 
requires additional conversion. The TFS architecture is 
tightly coupled to TensorFlow’s computational graph 
representation, which may introduce overhead when using 
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nonstandard operations and heterogeneous technology 
stacks.

TorchServe is a native solution for PyTorch models, co-
developed by AWS and Facebook [17]. It is designed to 
simplify deployment and supports the TorchScript format, 
which facilitates the transfer of models to production. In 
practice, TorchServe demonstrates strong performance and 
ease of operation, but in some benchmarks, it falls short 
of specialized C++-based solutions in terms of maximum 
throughput under high load.

NVIDIA Triton Inference Server is a multi-framework 
server that supports TensorFlow, PyTorch, ONNX, TensorRT, 
and XGBoost [18]. Its key advantage lies in its ability to 
concurrently execute multiple models on a single GPU, 
where different models or numerous instances of the same 
model simultaneously utilize various sets of streaming 
multiprocessors or share resources over time. Triton also 
integrates with HugeCTR, which optimizes the handling 
of large embedding tables in recommender systems. 
Comparison of inference servers for high-load RecSys shown 
in table 2 below.

Table. 2. Comparison of inference servers for high-load RecSys.

Feature TensorFlow Serving TorchServe NVIDIA Triton Inference Server
Backend TensorFlow (C++) PyTorch (Java/Python) C++ (custom backends)
Dynamic Batching Yes Yes Yes (advanced scheduling)
Embedding Cache No (requires external solution) No Yes (via HugeCTR backend)
Concurrent Execution Limited Limited Full support (MIG, streams)
Protocols gRPC, REST gRPC, REST gRPC (optional), REST, C API
Typical Use Case Pure TF pipeline Pure PyTorch pipeline Heterogeneous models, maximum performance

The diagram in Figure 2 illustrates the request processing flow in Triton with dynamic batching and hierarchical embedding 
caching.

Fig. 2. Triton Inference Flow with Dynamic Batching and Embedding Cache

Adaptivity and Continuous Training: Coping with 
Drift

The rapid evolution of user preferences in e-commerce and 
media implies that static recommendation models quickly 
lose relevance and degrade in quality. This phenomenon 

is usually described in terms of drift, which is typically 
classified into several types.

Data drift refers to changes in the statistical distribution 
of input features P(X). An example might be a new type of 
product or content category that becomes very popular in a 
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short time. If the datasets and user profiles are not updated 
to reflect the new product type, the model’s old patterns will 
be outdated and no longer relevant.

Concept drift is the change in the association between a set 
X of explanatory attributes and the target variable Y, defined 
as P(Y|X), whereby the explanatory attributes remain 
unchanged while their dependence on Y varies. Concretely, 
an individual’s purchasing inclination and behavior during 
holiday sales, pandemics, or other external events may 
change, thereby altering how a user reacts to the same 
recommendations.

Drift Monitoring

Timely detection of model degradation and system-level 
issues requires the implementation of a comprehensive 
monitoring system that tracks not only infrastructure metrics 
such as CPU and GPU utilization, response latency, and 
throughput, but also statistical properties of incoming data 
and model predictions. This approach enables the detection 
of changes in traffic patterns and user behavior before they 
translate into noticeable declines in business metrics.

Key statistical metrics include the Population Stability 
Index (PSI), which measures differences between feature 
distributions at training time and at inference time. 
Significant PSI deviations indicate that the current data 
stream differs substantially from the conditions under which 
the model was trained. In addition, KL divergence is used to 
quantify discrepancies between probability distributions of 
model predictions, for example, the distribution of click or 
conversion probability scores.

Online quality metrics also play an essential role, such as 
realized CTR, conversion rate, revenue per session, and 
average order value, measured with a time delay after user 
feedback has been observed. Analyzing the dynamics of these 
indicators, in conjunction with statistical metrics on the data 
and predictions, enables not only the detection of drift and 
model degradation, but also the measurement of the impact 
of changes in architecture, hyperparameters, or training 
strategies on commercial outcomes. In practice, tying drift 
alerts to thresholds on business metrics (for example, a 
relative drop in CTR or revenue per mille recommendations) 
allows product and marketing teams to reason about model 
health in familiar KPI terms and to prioritize remediation 
according to estimated revenue at risk.

Retraining Strategies

Since retraining under heavy load can take days, retraining a 
model on historical data cannot be used in real-time systems, 
and MLOps infrastructure must accommodate more real-time 
and responsive ways to improve a model. A third approach 
is incremental learning (fine-tuning), where the weight 
parameters of a deployed model are updated via new data 
(e.g., data from the last few hours) to reflect recent user 
interests to quickly capture changes in trends, user interests, 
and user behavior while preserving what has been learned 

about long-term user interests. This can be seen as a warm 
start, where the model is not retrained from scratch but is 
refined with each new data point.

A separate direction is represented by architectures such as 
Ekko [19]. In these systems, a peer-to-peer mechanism for 
propagating model updates across infrastructure components 
is proposed. Instead of the traditional process where a 
checkpoint with updated weights is first saved to disk and 
then loaded by inference servers (a process that may take 
minutes), gradient updates are transmitted directly between 
training and inference workers. This dramatically reduces 
model update latency, from tens of minutes to seconds, down 
to 2.4 seconds in experimental studies. Such responsiveness 
is crucial for news recommendation systems, where content 
relevance decays rapidly.

The Monolith system by ByteDance advances this approach 
further by implementing fully streaming, real-time training 
[20]. Its embedding tables are built on collisionless hash 
structures and eviction mechanisms for stale entries. This 
enables the model to train continuously on the Kafka event 
stream, updating user and item representations as soon 
as new activity occurs. Consequently, the system can react 
almost instantaneously to new user actions, minimizing the 
lag between behavioral changes and corresponding model 
adaptation.

Vector Search in High-Load Systems

At the candidate generation stage, the system must select 
a few hundred items from the most relevant millions. For 
this purpose, Approximate Nearest Neighbor (ANN) search 
methods are used [21].

Under high load, classical nearest-neighbor approaches 
such as KD-tree-based structures become ineffective due 
to the high dimensionality of feature spaces and large data 
volumes. This has been especially important in recommender 
systems and embedding-based web search, where millions 
or billions of vectors must be processed in near real time. 
In these applications, the industry has increasingly turned 
to specialized ANN algorithms and libraries, which strike a 
balance between accuracy and performance.

Hierarchical Navigable Small World (HNSW) is one of the 
more recent ANN standards, which uses multilayer small-
world graphs for efficient search in the embedding space. It 
has near-logarithmic search time and a high recall (of vectors 
from the index) for a given accuracy, and has a good trade-
off between speed, accuracy, and memory-usage, making it 
suitable for low-latency systems.

Another key solution is the Faiss (Facebook AI Similarity 
Search) library, explicitly designed for highly efficient search 
over extensive collections of vector representations. Faiss 
implements a variety of indexes, including IVF (Inverted File 
Index) and PQ (Product Quantization), with GPU support. 
The combination of IVF and PQ enables aggressive index 
compression, sometimes by an order of magnitude or more 
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compared to naive vector storage, while simultaneously 
accelerating search by reducing the amount of data processed 
per query. At the same time, a satisfactory level of accuracy 
is preserved, making Faiss an industry standard for scalable 
embedding search.

Using GPUs for vector search (e.g., via Faiss-GPU or NVIDIA 
cuVS) enables thousands of queries to be processed in 
parallel, achieving orders-of-magnitude higher throughput 
than CPU-only solutions. Integrating these libraries into 
Triton (through custom backends or the Python backend) 
enables end-to-end GPU pipelines, avoiding the overhead of 
data transfers between CPU and GPU. 

For product recommendations, the configuration of ANN 
indexes and the associated latency–accuracy trade-offs 
directly translate into business impact. A higher recall in 
the candidate generation stage increases the probability 
that downstream ranking models will consider high-margin, 
promotion-relevant, or inventory-critical items. At the same 
time, stable low latency ensures that these gains are not offset 
by user frustration or session abandonment. Consequently, 
vector search should be treated as a controllable lever in 
the commercial strategy: different index configurations 
and search budgets can be aligned with the objectives of 
specific campaigns (e.g., clearance of overstocked items 
versus maximization of basket value in premium categories) 
and evaluated through online experiments on standard 
marketing KPIs.

Discussion

The results obtained show that optimizing MLOps processes 
for product recommendation systems under high load 
should be considered a specialized engineering discipline 
rather than a straightforward transfer of generic machine 
learning practices into the e-commerce domain. Unlike 
media or content recommendations, latency and output 
quality in product recommendations are directly linked to 
conversion, average order value, bounce rate, and session 
depth, especially during peak traffic periods such as sales 
and promotional campaigns. Under these conditions, MLOps 
becomes a key mechanism for maintaining the stability and 
predictability not only of models, but also of the business 
logic of storefronts, search results, dynamic merchandising, 
and promo placements.

It is shown that transitioning to centralized feature 
management via a Feature Store with strict consistency 
between offline and online processing is the foundation of 
reliable product recommendation operation: it reduces the 
risk of inconsistencies in prices, stock levels, promo rules, 
and segmentation, which, in a high-load environment, are 
instantly amplified across a large user base.

Analysis of embedding storage architectures demonstrates 
that, for product recommendation systems operating over 
large, continuously changing catalogs, hierarchical parameter 

servers and algorithmic representation compression become 
critically important. The use of multi-level embedding caches, 
in which hot items and active users are retained in GPU 
memory, while the warm and cold portions of the catalog are 
moved to cheaper memory tiers, enables sustaining high RPS 
without exponential growth in the number of accelerators. 
At the same time, dynamically allocating higher-dimensional 
embeddings to the most in-demand and high-margin SKUs 
yields an additional gain in memory footprint and throughput. 
However, such an architecture increases the dependency 
of recommendation quality on the correctness of caching 
and monitoring policies: any errors in parameter hierarchy 
management under high load may degrade performance 
precisely in those catalog segments that generate the most 
revenue.

The approaches to inference optimization considered here 
show that, for high-load product recommendation systems, 
dynamic batching and concurrent model execution on the 
inference server should be treated as components of traffic 
management. Batching configuration, request prioritization, 
and model placement schemes on accelerators must be 
tuned to the storefront’s traffic profile: spikes in requests 
to the home page, category listings, and the cart; differences 
between mobile and web traffic; and user behavior at 
campaign launch time. More aggressive request aggregation 
and the use of heterogeneous batches can significantly 
increase throughput, but they demand precise control over 
latency in critical user journeys. Vector search as an extension 
of candidate generation models plays an equally central 
role: the choice of indexes and parameters for approximate 
embedding search directly affects output relevance and 
latency stability when working with millions of item vectors. 
It therefore must be governed by the same MLOps processes 
as the rest of the recommendation pipeline.

Finally, integrating drift monitoring and continuous 
training loops specifically in the context of high-load 
product recommendations shows that the minimal delay 
between changes in assortment and user behavior and the 
delivery of an updated model to production determines 
system resilience. E-commerce event streams, new items, 
price changes, promotion start and end, seasonal demand 
spikes, create an extremely dynamic environment in which 
infrequent batch model updates are insufficient. Incremental 
or streaming training over real-time event flows, combined 
with automated monitoring of data, predictions, and business 
metrics, can substantially reduce this gap but requires mature 
processes for versioning, testing, and risk management.

Taken together, the results indicate that for product 
recommendation systems under high load, MLOps must 
evolve into a comprehensive engineering standard in which 
architectural decisions on data, embeddings, inference, and 
training are designed jointly, with explicit consideration 
of peak loads, infrastructure costs, and target commercial 
KPIs.
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Conclusions

Optimizing MLOps for high-load product recommendation 
systems requires shifting from static pipeline paradigms to 
dynamic, reactive, and hardware-aware architectures. The 
analysis conducted allows the following key conclusions and 
recommendations to be formulated.

Data consistency must be ensured at the architectural level 
by introducing a Feature Store that supports streaming 
aggregations and by using optimized in-memory stores (Redis, 
RonDB, OpenMLDB) for inference. The embedding scale 
problem is effectively addressed by employing hierarchical 
parameter servers (HPS) that utilize the whole memory 
hierarchy (GPU HBM → RAM → SSD) in conjunction with 
quantization techniques and dynamic vector dimensionality 
selection.

Maximizing inference throughput is achieved through 
dynamic request batching and the use of specialized servers 
(NVIDIA Triton) that support concurrent model execution 
and optimized backends (TensorRT). Adaptivity to change is 
ensured by transitioning to incremental or online training, 
backed by architectures for fast model update delivery 
(Ekko/Monolith-type systems) and continuous concept drift 
monitoring.

The future development of this area is inextricably linked 
to the integration of Large Language Models (LLMs) into 
recommendation pipelines (Generative RecSys). This 
will require adapting optimization methods developed 
for LLMs (KV caching, PagedAttention) to the specifics 
of recommendation tasks, as well as further evolution of 
hardware accelerators for efficient sparse-data processing.
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