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This article examines the comprehensive optimization of MLOps processes for high-load product recommendation systems, in
which stringent latency SLAs and terabyte-scale embeddings coexist with rapid drift in user preferences and intense business
pressure to maximize commercial KPIs. The relevance of the study stems from the fact that classical batch-oriented MLOps
practices do not provide the required feature consistency, stable model quality, or predictability of revenue, conversion,
and retention metrics under peak loads typical of e-commerce and media services. The study aims to develop a holistic
engineering and product-oriented approach to the design of data, inference, and training architectures, encompassing a
Feature Store with streaming aggregations, hierarchical parameter servers, algorithmic embedding compression, dynamic
batching, and concurrent model execution, vector search over embeddings, as well as drift monitoring loops and continuous
(online) training. The scientific contribution lies in integrating hardware-oriented optimizations and process-centric MLOps
methodologies into a unified RecSys design standard that simultaneously improves throughput and reduces latency while
maintaining recommendation quality and stabilizing key business metrics. The article is intended for data and MLOps

engineers, recommendation system architects, and technical leaders of digital products and marketing teams.

Keywords: MLOps, Recommendation Systems, DLRM, High-Load Systems.

INTRODUCTION

In the contemporary landscape of e-commerce and online
services, recommender systems have evolved from auxiliary
navigation tools into a primary driver of revenue and user
retention. According to existing studies, personalization
based on machine learning algorithms accounts for up to
35% of Amazon’s revenue and 80% of Netflix’s views [1].
In online retail, recommendations influence not only which
items are purchased, but also campaign uplift, average order
value, and the distribution of demand across categories and
price segments. However, as models become deeper and
more complex, transitioning from matrix factorization to
transformers and graph neural networks, the requirements
for their serving infrastructure increase exponentially.

Many such business applications are particularly tied to
commercial processes such as digital merchandising, promo
placement, coupon and loyalty mechanics, and remarketing.
As a result, any degradation in model performance, feature
uniformity, or latency will be immediately reflected in
business metrics monitored by the commercial or marketing
departments, such as click-through rate (CTR), conversion
rate, revenue per session, and inventory turnover. MLOps
processes for recommender systems cannot be viewed

solely as a technical operations exercise; they must also
directly support the reliability and controllability of business
experiments.

The specifics of recommender systems under high load are
characterized by a unique set of constraints that distinguish
them from computer vision or NLP workloads. First, there are
stringent latency Service Level Agreements (SLAs). Research
indicates that an increase in system response latency of
only 100 ms may lead to a 2.4% or more drop in conversion
[2]. For systems serving millions of users, this implies that
extremely complex computations (nearest-neighbor search,
ranking thousands of candidates) must be performed within
a 10-50 ms window.

Second, there is the problem of data scale. Modern DLRM
architectures operate on categorical features (user IDs, item
IDs) with cardinalities that can reach billions. This leads to
embedding tables whose size reaches hundreds of gigabytes
or even terabytes, exceeding the memory capacity (HBM) of
even the most advanced accelerators (GPUs/TPUs) [3].

Third, there is environmental dynamism. Unlike image
classification, where the concept of a cat is static, user
preferences and item popularity change continuously. The
phenomena of data and concept drift require the introduction
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of continuous training or online learning processes, which
pose nontrivial challenges for MLOps engineers in ensuring
the stability and reproducibility of pipelines [4].

Classical MLOps practices, developed primarily for batch-
processing workloads, prove insufficient for real-time
RecSys whose outputs are directly monetized. A standard
train once per week - deploy cycle leads to models that fail
to account for the latest user interactions, price changes, or
campaign configuration, which is critical for session-based
recommendation scenarios and short-lived promotions.
Furthermore, there is the well-known problem of training-
serving skew, in which the feature generation logic in the
offline environment (Spark/Pandas) diverges from thatin the
online environment (C++/Go/Java microservices), resulting
in degradation of model quality metrics in production [5].
In commercial systems, this skew manifests as inconsistent
prices and availability, incorrect segmentation and promo
eligibility, and ultimately as fluctuations in conversion and
revenue that business teams cannot explain.

Thus, the relevance of this study lies in the need to systematize
disparate engineering and algorithmic optimization methods
into a unified, coherent approach to building MLOps
processes for high-load recommender systems.

The objective of this work is to develop theoretically
grounded, practically applicable recommendations for
optimizing the architecture and MLOps processes of product
recommendation systems under high load, with an explicit
focus on preserving and improving target business metrics
(CTR, conversion, revenue per session, and retention) during
traffic peaks and intensive marketing activity.

To achieve this objective, the following tasks are addressed:

1. Analysis of modern architectural patterns for managing
the lifecycle of recommendation models, including
Feature Store and Model Registry.

2. Investigation of inference optimization methods,
including quantization, pruning, and dynamic batching,
with assessment of their impact on latency and
throughput metrics.

3. Comparative analysis of model serving tools (Triton
Inference Server, TensorFlow Serving) in the context of
working with large embedding tables.

4. Development of strategies to combat data drift and
implementation of continuous training pipelines.

5. Assessment of the risks and limitations associated with
deploying high-frequency model updates in production
environments.

The study’s scientific novelty lies in integrating hardware-
level optimizations (GPU and memory) with process-
oriented MLOps methodologies and explicitly linking
them to business outcomes. While most works focus
either exclusively on recommendation algorithms or on
general MLOps issues, this article examines the synergy

between the two domains. It analyzes how architectural
decisions propagate to commercial KPIs. It proposes hybrid
approaches, such as hierarchical parameter servers (HPS)
combined with streaming Feature Stores, to minimize end-
to-end latency and to increase the stability and predictability
of revenue-related metrics under high load.

MATERIALS AND METHODS

The study is based on a Systematic Literature Review (SLR)
conducted according to the PRISMA methodology. Sources
were retrieved from the abstract databases Scopus and Web
of Science, as well as from the digital libraries IEEE Xplore
and ACM Digital Library. The sample included publications
from 2020 to 2025 that match the following keywords:
Recommender Systems, MLOps, High Load, Embedding
Optimization, Concept Drift, and Inference Serving.

The analysis includes works published in peer-reviewed
journals and A/A*level conference proceedings (such as KDD,
RecSys, SIGMOD, 0SDI, VLDB, NeurlIPS), as well as technical
reports from R&D units of major technology companies,
including Meta, Google, NVIDIA, Alibaba, and ByteDance. A
key requirement is that these reports describe architectures
of real-world production systems, such as Monolith, Ekko, or
HugeCTR. Additionally, experimental data or performance
metrics are mandatory to enable quantitative evaluation of
the proposed solutions.

Blog posts are excluded from consideration, as are works that
analyze recommender systems solely from an algorithmic
perspective, without addressing engineering aspects related
to deployment, operation, and maintenance in production
environments. In total, 21 key sources were selected,
including fundamental works on DLRM architecture, studies
on inference optimization, and concept drift management.

Several complementary analysis methods are applied in this
work. Architectural analysis enables us to break down the
overall Triton architecture, or a sub-part like the Feature
Store, into functional modules to identify performance
bottlenecks, and helps us analyze how each module fits into
the overall architecture, and how they contribute to the
latency, resource consumption, and reliability requirements
of the system.

In addition, comparative (benchmarking) analysis is
employed, involving the comparison of performance
characteristics of different frameworks, for example,
TensorFlow Serving and Triton, based on experimental data
from the selected sources. This enables objective assessment
of the advantages and limitations of alternative solutions in
typical operational scenarios.

To describe and understand system organization, modeling
is also used. Mermaid is employed as a formal notation to
visualize data flows, server architectures, and CI/CD/CT
processes. Such diagrams help systematize knowledge of the
system'’s structure and simplify the analysis of its scalability
and integration points.
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Special attention is paid to trade-off analysis. A balance is
assessed between recommendation accuracy, measured by
AUC and NDCG metrics, and system-level characteristics such
as response latency and memory consumption. This analysis
is performed in the context of optimization techniques,
including quantization and caching, to understand the
degree to which model quality loss is acceptable in exchange
for improved performance and infrastructure efficiency.

RESULTS

Data Management Architecture: Feature Store as a
Foundation of Consistency

In high-load recommender systems, data quality and access
speed are decisive factors. One of the most acute problems
is training-serving skew, divergence in feature distributions
or feature computation logic between training and
inference stages. This often occurs when training features
are prepared via batch processes (e.g., Spark). In contrast,
inference features are reimplemented in high-performance
languages (e.g., C++, Go), which inevitably leads to bugs and
inconsistencies [6].

In  commercial product recommendation scenarios,
this type of inconsistency directly impacts key business
indicators. Misaligned feature computation between offline
training and online serving manifests as outdated prices in
recommendations, incorrect stock availability, or missing
promotional attributes at inference time. For a high-traffic
storefront, even a small fraction of recommendations built on
stale or inconsistent features can lead to measurable drops
in click-through rate, conversion, and average order value, as
wellasanincreasein customersupportincidents.Centralizing
feature computation in a Feature Store, therefore, serves not
only as an engineering control to manage technical debt but
also as a mechanism to stabilize revenue and marketing
campaign performance during peak load.

Dual Feature Store Architecture

To address this issue, the industry widely adopts the Feature
Store pattern, which implements data abstraction through
two physical stores under a unified logical interface [7].
The first store, the offline store (cold storage), is intended

for storing historical data over long periods, up to months
and years, and is used primarily for model training. CDP
storage backends include a distributed file system (such
as the Hadoop Distributed File System (HDFS) or Amazon
Simple Storage Service (S3)), a columnar database (such
as BigQuery or Snowflake), or a columnar storage format
(such as Parquet). These storage backends should be able to
scan high-velocity data and query terabytes of data. It is also
important that the backend supports time-travel queries,
which allow the state of features to be retrieved at arbitrary
points in time to avoid future leakage.

The second store, the online store (hot storage), is oriented
toward real-time operation and is responsible for providing
feature vectors for model serving when handling online
requests. In-memory databases such as Redis or RonDB,
as well as low-latency NoSQL stores such as DynamoDB or
Cassandra, are used at this level. The primary requirement
is ultra-low latency for key-based read operations (point
lookups).

Latency Optimization in the Online Store

Performance studies conducted on OpenMLDB and
Hopsworks demonstrate that the choice of technology for
the online store critically influences the overall latency
of the recommendation service [8]. Traditional key-value
stores (such as Redis) deliver high speed but can become
bottlenecks when complex on-the-fly aggregations are
required (for example, average order value over the last 10
minutes).

In this regard, a promising direction is the use of specialized
engines that support SQL-like queries over streaming data
with just-in-time (JIT) compilation of query plans into
machine code. For instance, the OpenMLDB architecture
achieves latency below 5 ms at a throughput of 17k QPS due
to optimized execution plans and caching [8]. This enables
moving feature engineering logic out of application code
and into the Feature Store itself, guaranteeing identical
computations in both offline and online modes. The table 1
shows a comparative analysis of Feature Store architectures
for RecSys.

Table. 1. Comparative analysis of Feature Store architectures for RecSys.

Characteristic |Feast Hopsworks

Tecton OpenMLDB

Type Open Source (DIY)

Platform (Enterprise/0SS)

Managed Service Open Source (Optimized)

Offline Store | Pluggable (S3, BQ, etc.) [HopsFS / S3

Snowflake / Databricks |Spark / HDFS

Online Store  |Redis, DynamoDB RonDB (MySQL Cluster) Dynamo DB / Redis In-memory optimized DB
Consistency Eventual Strong (within transactions) |Eventual Strong

Streaming Via external engines|Built-in Built-in Built-in (Optimized SQL)
Aggregations | (Flink)

Figure 1 illustrates the data flow in an MLOps pipeline that ensures feature consistency via a Feature Store.
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Fig. 1. End-to-End Feature Store Architecture.

The diagram shows how streaming data (RawEvents) are
processed in real time, ingested into the online store for
immediate use at inference time, and archived in the offline
store for future retraining. The feature registry ensures
that feature definitions are identical along both processing
paths.

From a business perspective, the ability to compute features
over streaming data with millisecond-level latency makes
it possible to expose near-real-time signals to marketing
and merchandising logic. Examples include session-level
engagement scores, dynamic price sensitivity indicators, and
short-term demand surges driven by campaigns or external
events. When these features are consistently available both
to training pipelines and to online serving, recommendation
and ranking models can react within minutes rather than
days to changes in user behavior or campaign configuration.
Empirically, this shortens the feedback loop between
marketing experiments and observable KPI shifts, enabling
more aggressive A/B testing of promotion strategies without
sacrificing user experience during traffic spikes.

The Problem of Embedding Scalability and
Hierarchical Storage Systems

Modern recommender systems are based on models that
use embeddings (dense vector representations) to encode
sparse categorical features. Unlike computer vision (CNN) or
natural language processing (Transformer) models, where
dense computations (GEMM) dominate, DLRM architectures
spend a substantial portion of their time on memory lookups

[9]-
GPU Memory Constraints

The problem arises because the size of embedding tables in
industrial systems (e.g., Facebook, Google, Alibaba) can reach
hundreds of gigabytes or tens of terabytes. This is due to the
enormous number of users and items, as well as the use of

combinatorial features (cross-features). Modern GPUs (such
as NVIDIA A100 or H100) have limited memory capacity
(40-80 GB), making it impossible to fit the entire model on a
single device [10].

Traditional model parallelism (distributing a model across
multiple GPUs) becomes economically inefficient at terabyte-
scale embeddings, since it requires hundreds of GPUs purely
for parameter storage, while compute cores may remain
underutilized.

Hierarchical Parameter Server (HPS)

A solution to this problem is adopting a hierarchical
parameter server architecture. This approach, implemented
for example in the NVIDIA Merlin HugeCTR framework, uses
a multi-level storage hierarchy analogous to CPU memory
hierarchies [11]. In the context of product recommendation,
such an architecture is not only a technical optimization,
but also a way to control unit economics: it allows keeping
the most commercially essential entities (high-margin and
high-traffic SKUs, active loyalty users, key promotional
inventories) in the fastest memory tier, while offloading the
long tail of the catalog to cheaper storage. As a result, the
system can sustain the required recommendation quality
and latency for revenue-critical segments without linear
growth of accelerator count and infrastructure costs.

In the embedding storage hierarchy, the first level, the L1
cache, residesin GPUmemoryandstoreshotembeddings, that
is, vectors corresponding to the most frequently requested
IDs. Request distributions in recommender systems typically
follow a power law: a relatively small fraction of objects, for
example, around 20% of items, accounts for up to 80% of
all views. Placing the corresponding embeddings in fast GPU
memory (HBM) is critical for overall system performance, as
it minimizes access latency for the most in-demand data.

The second level, the L2 cache, is located in the host’s main
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memory (CPU RAM) and stores warm embeddings, that is,
less popular but still regularly used vectors. Modern servers
can be equipped with terabytes of RAM, enabling the storage
of tables significantly larger than what fits in GPU memory.
Access to these data occurs over PCle or, in more specialized
systems such as DGX, over high-speed interconnects like
NVLink, providing an acceptable compromise between
capacity and latency.

The third level, L3 storage, is represented by persistent
storage based on solid-state drives (SSD), typically NVMe.
This level holds cold embeddings, which are rarely accessed,
as well as complete copies of feature tables. Although SSD
access is substantially slower than GPU or main memory
access, use of this level allows scaling the system to huge
data volumes while retaining the ability to restore and
periodically load rarely used vectors into faster cache levels
as needed.

Analysis of the HPS architecture shows that it effectively
hides the latency of accessing slower memory tiers through
asynchronous prefetching and pipelining [12]. The HugeCTR
system, integrated with Triton Inference Server, allows
this hierarchy to be used transparently to the developer,
automatically managing the movement of embeddings
between levels based on access frequency.

For business stakeholders, this means that catalog growth
and assortment rotation can proceed without proportional
increases in serving costs. The ratio of infrastructure spend
to incremental gross merchandise value (GMV) generated
by recommendations becomes more favorable, particularly
in markets with thin margins and frequent price changes.
Moreover, explicit separation of hot and cold segments in the
embedding hierarchy simplifies the design of differentiated
commercial strategies, for example, more aggressive cross-
selling for fast-moving consumer goods versus more
conservative exposure of long-tail items.

Algorithmic  Optimization: Quantization and

Budgeted Embeddings

In addition to hardware solutions, quantization is an effective
way to reduce memory pressure. Converting embeddings
from FP32 (32-bit floating-point) to FP16 or INT8 reduces
memory consumption by a factor of 2-4. Study [9] shows
that using mixed precision has a negligible effect on ranking
metrics (AUC/NDCG) while substantially increasing memory
bandwidth.

A more advanced method is the use of Budgeted Embedding
Tables (BET) [13]. Instead of using a fixed vector
dimensionality (e.g., d = 64) for all entities, BET dynamically
assigns dimensionality depending on feature frequency.
Popular items receive higher-dimensional vectors for better
representational power, while rare items (the tail of the
distribution) are encoded using lower-dimensional vectors.
This allows significant model compression without losing
information about essential entities.

Optimization of Real-Time Inference Processes

The inference stage has latency requirements, which are
the most demanding of all stages since they determine the
storefront, search, and personalization widgets that users
see. During periods of high load, the server must handle
thousands of concurrent requests with the lowest response
time possible to avoid degrading click-through rate,
conversion rate, and basket completion during peak traffic.
In practice, this implies that optimizations at the inference
layer must be evaluated not only in terms of queries per
second, but also in terms of their impact on abandonment
rates, session depth, and the stability of key commercial KPIs
during large-scale campaigns.

Dynamic Batching

Processing each request individually (batch size = 1) is
highly inefficient for GPUs, which are designed for massive
parallel computations. Kernel launch overhead and data
transfer costs may exceed the time required for practical
computation.

Dynamic batching addresses this issue by aggregating
incoming requests into a buffer over a short time window
(e.g., 1-5 ms) or until a predefined batch size is reached. The
resulting batch is then sent to the GPU as a single tensor [14].
This approach dramatically increases system throughput at
the cost of a slight and controllable increase in per-request
latency. In e-commerce, dynamic batching is a form of traffic
shaping. When the batching window and maximum batch
sizes are set correctly, this can reduce latency by several
milliseconds, while providing a much larger increase in
throughput and temporarily reducing the risk of timeouts
or downgrades at campaign start. This allows for more
aggressive marketing, such as flash sales and coupon pushes,
as well as remarketing banners.

Tool analysis demonstrates that NVIDIA Triton Inference
Server provides one of the most advanced implementations
of dynamic batching. Unlike TensorFlow Serving, which
also supports this feature, Triton enables more flexible
configuration of queue priorities and timeout strategies, and
supports heterogeneous batches (combining requests for
different versions of the same model) [15].

Comparative Analysis of Inference Servers

The choice of inference server is a critical architectural
decision. In current practice, several key distinctions among
popular model-serving solutions can be identified.

TensorFlow Serving (TFS) is the de facto standard in the
TensorFlow ecosystem and provides high performance
for TF-based models, including through XLA compilation
optimizations [16]. However, support for models developed
in other frameworks (PyTorch, ONNX) is limited and often
requires additional conversion. The TFS architecture is
tightly coupled to TensorFlow’s computational graph
representation, which may introduce overhead when using
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nonstandard operations and heterogeneous technology
stacks.

TorchServe is a native solution for PyTorch models, co-
developed by AWS and Facebook [17]. It is designed to
simplify deployment and supports the TorchScript format,
which facilitates the transfer of models to production. In
practice, TorchServe demonstrates strong performance and
ease of operation, but in some benchmarks, it falls short
of specialized C++-based solutions in terms of maximum
throughput under high load.

NVIDIA Triton Inference Server is a multi-framework
server that supports TensorFlow, PyTorch, ONNX, TensorRT,
and XGBoost [18]. Its key advantage lies in its ability to
concurrently execute multiple models on a single GPU,
where different models or numerous instances of the same
model simultaneously utilize various sets of streaming
multiprocessors or share resources over time. Triton also
integrates with HugeCTR, which optimizes the handling
of large embedding tables in recommender systems.
Comparison of inference servers for high-load RecSys shown
in table 2 below.

Table. 2. Comparison of inference servers for high-load RecSys.

Feature TensorFlow Serving TorchServe NVIDIA Triton Inference Server
Backend TensorFlow (C++) PyTorch (Java/Python) |C++ (custom backends)

Dynamic Batching Yes Yes Yes (advanced scheduling)

Embedding Cache No (requires external solution) | No Yes (via HugeCTR backend)

Concurrent Execution | Limited Limited Full support (MIG, streams)

Protocols gRPC, REST gRPC, REST gRPC (optional), REST, C API

Typical Use Case Pure TF pipeline Pure PyTorch pipeline |Heterogeneous models, maximum performance

The diagram in Figure 2 illustrates the request processing flow in Triton with dynamic batching and hierarchical embedding

caching.
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Fig. 2. Triton Inference Flow with Dynamic Batching and Embedding Cache

Adaptivity and Continuous Training: Coping with
Drift

The rapid evolution of user preferences in e-commerce and
media implies that static recommendation models quickly
lose relevance and degrade in quality. This phenomenon

is usually described in terms of drift, which is typically
classified into several types.

Data drift refers to changes in the statistical distribution
of input features P(X). An example might be a new type of
product or content category that becomes very popular in a
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short time. If the datasets and user profiles are not updated
to reflect the new product type, the model’s old patterns will
be outdated and no longer relevant.

Concept drift is the change in the association between a set
X of explanatory attributes and the target variable Y, defined
as P(Y|X), whereby the explanatory attributes remain
unchanged while their dependence on Y varies. Concretely,
an individual’s purchasing inclination and behavior during
holiday sales, pandemics, or other external events may
change, thereby altering how a user reacts to the same
recommendations.

Drift Monitoring

Timely detection of model degradation and system-level
issues requires the implementation of a comprehensive
monitoring system that tracks not only infrastructure metrics
such as CPU and GPU utilization, response latency, and
throughput, but also statistical properties of incoming data
and model predictions. This approach enables the detection
of changes in traffic patterns and user behavior before they
translate into noticeable declines in business metrics.

Key statistical metrics include the Population Stability
Index (PSI), which measures differences between feature
distributions at training time and at inference time.
Significant PSI deviations indicate that the current data
stream differs substantially from the conditions under which
the model was trained. In addition, KL divergence is used to
quantify discrepancies between probability distributions of
model predictions, for example, the distribution of click or
conversion probability scores.

Online quality metrics also play an essential role, such as
realized CTR, conversion rate, revenue per session, and
average order value, measured with a time delay after user
feedback has been observed. Analyzing the dynamics of these
indicators, in conjunction with statistical metrics on the data
and predictions, enables not only the detection of drift and
model degradation, but also the measurement of the impact
of changes in architecture, hyperparameters, or training
strategies on commercial outcomes. In practice, tying drift
alerts to thresholds on business metrics (for example, a
relative drop in CTR or revenue per mille recommendations)
allows product and marketing teams to reason about model
health in familiar KPI terms and to prioritize remediation
according to estimated revenue at risk.

Retraining Strategies

Since retraining under heavy load can take days, retraining a
model on historical data cannot be used in real-time systems,
and MLOps infrastructure must accommodate more real-time
and responsive ways to improve a model. A third approach
is incremental learning (fine-tuning), where the weight
parameters of a deployed model are updated via new data
(e.g., data from the last few hours) to reflect recent user
interests to quickly capture changes in trends, user interests,
and user behavior while preserving what has been learned

about long-term user interests. This can be seen as a warm
start, where the model is not retrained from scratch but is
refined with each new data point.

A separate direction is represented by architectures such as
Ekko [19]. In these systems, a peer-to-peer mechanism for
propagating model updates across infrastructure components
is proposed. Instead of the traditional process where a
checkpoint with updated weights is first saved to disk and
then loaded by inference servers (a process that may take
minutes), gradient updates are transmitted directly between
training and inference workers. This dramatically reduces
model update latency, from tens of minutes to seconds, down
to 2.4 seconds in experimental studies. Such responsiveness
is crucial for news recommendation systems, where content
relevance decays rapidly.

The Monolith system by ByteDance advances this approach
further by implementing fully streaming, real-time training
[20]. Its embedding tables are built on collisionless hash
structures and eviction mechanisms for stale entries. This
enables the model to train continuously on the Kafka event
stream, updating user and item representations as soon
as new activity occurs. Consequently, the system can react
almost instantaneously to new user actions, minimizing the
lag between behavioral changes and corresponding model
adaptation.

Vector Search in High-Load Systems

At the candidate generation stage, the system must select
a few hundred items from the most relevant millions. For
this purpose, Approximate Nearest Neighbor (ANN) search
methods are used [21].

Under high load, classical nearest-neighbor approaches
such as KD-tree-based structures become ineffective due
to the high dimensionality of feature spaces and large data
volumes. This has been especially important in recommender
systems and embedding-based web search, where millions
or billions of vectors must be processed in near real time.
In these applications, the industry has increasingly turned
to specialized ANN algorithms and libraries, which strike a
balance between accuracy and performance.

Hierarchical Navigable Small World (HNSW) is one of the
more recent ANN standards, which uses multilayer small-
world graphs for efficient search in the embedding space. It
has near-logarithmic search time and a high recall (of vectors
from the index) for a given accuracy, and has a good trade-
off between speed, accuracy, and memory-usage, making it
suitable for low-latency systems.

Another key solution is the Faiss (Facebook Al Similarity
Search) library, explicitly designed for highly efficient search
over extensive collections of vector representations. Faiss
implements a variety of indexes, including IVF (Inverted File
Index) and PQ (Product Quantization), with GPU support.
The combination of IVF and PQ enables aggressive index
compression, sometimes by an order of magnitude or more
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compared to naive vector storage, while simultaneously
accelerating search by reducing the amount of data processed
per query. At the same time, a satisfactory level of accuracy
is preserved, making Faiss an industry standard for scalable
embedding search.

Using GPUs for vector search (e.g., via Faiss-GPU or NVIDIA
cuVS) enables thousands of queries to be processed in
parallel, achieving orders-of-magnitude higher throughput
than CPU-only solutions. Integrating these libraries into
Triton (through custom backends or the Python backend)
enables end-to-end GPU pipelines, avoiding the overhead of
data transfers between CPU and GPU.

For product recommendations, the configuration of ANN
indexes and the associated latency-accuracy trade-offs
directly translate into business impact. A higher recall in
the candidate generation stage increases the probability
that downstream ranking models will consider high-margin,
promotion-relevant, or inventory-critical items. At the same
time, stable low latency ensures that these gains are not offset
by user frustration or session abandonment. Consequently,
vector search should be treated as a controllable lever in
the commercial strategy: different index configurations
and search budgets can be aligned with the objectives of
specific campaigns (e.g., clearance of overstocked items
versus maximization of basket value in premium categories)
and evaluated through online experiments on standard
marketing KPIs.

DISCUSSION

The results obtained show that optimizing MLOps processes
for product recommendation systems under high load
should be considered a specialized engineering discipline
rather than a straightforward transfer of generic machine
learning practices into the e-commerce domain. Unlike
media or content recommendations, latency and output
quality in product recommendations are directly linked to
conversion, average order value, bounce rate, and session
depth, especially during peak traffic periods such as sales
and promotional campaigns. Under these conditions, MLOps
becomes a key mechanism for maintaining the stability and
predictability not only of models, but also of the business
logic of storefronts, search results, dynamic merchandising,
and promo placements.

It is shown that transitioning to centralized feature
management via a Feature Store with strict consistency
between offline and online processing is the foundation of
reliable product recommendation operation: it reduces the
risk of inconsistencies in prices, stock levels, promo rules,
and segmentation, which, in a high-load environment, are
instantly amplified across a large user base.

Analysis of embedding storage architectures demonstrates
that, for product recommendation systems operating over
large, continuously changing catalogs, hierarchical parameter

servers and algorithmic representation compression become
critically important. The use of multi-level embedding caches,
in which hot items and active users are retained in GPU
memory, while the warm and cold portions of the catalog are
moved to cheaper memory tiers, enables sustaining high RPS
without exponential growth in the number of accelerators.
At the same time, dynamically allocating higher-dimensional
embeddings to the most in-demand and high-margin SKUs
yieldsanadditional gainin memory footprintand throughput.
However, such an architecture increases the dependency
of recommendation quality on the correctness of caching
and monitoring policies: any errors in parameter hierarchy
management under high load may degrade performance
precisely in those catalog segments that generate the most
revenue.

The approaches to inference optimization considered here
show that, for high-load product recommendation systems,
dynamic batching and concurrent model execution on the
inference server should be treated as components of traffic
management. Batching configuration, request prioritization,
and model placement schemes on accelerators must be
tuned to the storefront’s traffic profile: spikes in requests
to the home page, category listings, and the cart; differences
between mobile and web traffic; and user behavior at
campaign launch time. More aggressive request aggregation
and the use of heterogeneous batches can significantly
increase throughput, but they demand precise control over
latency in critical user journeys. Vector search as an extension
of candidate generation models plays an equally central
role: the choice of indexes and parameters for approximate
embedding search directly affects output relevance and
latency stability when working with millions of item vectors.
It therefore must be governed by the same MLOps processes
as the rest of the recommendation pipeline.

Finally, integrating drift monitoring and continuous
training loops specifically in the context of high-load
product recommendations shows that the minimal delay
between changes in assortment and user behavior and the
delivery of an updated model to production determines
system resilience. E-commerce event streams, new items,
price changes, promotion start and end, seasonal demand
spikes, create an extremely dynamic environment in which
infrequent batch model updates are insufficient. Incremental
or streaming training over real-time event flows, combined
with automated monitoring of data, predictions, and business
metrics, can substantially reduce this gap butrequires mature
processes for versioning, testing, and risk management.

Taken together, the results indicate that for product
recommendation systems under high load, MLOps must
evolve into a comprehensive engineering standard in which
architectural decisions on data, embeddings, inference, and
training are designed jointly, with explicit consideration
of peak loads, infrastructure costs, and target commercial
KPIs.
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CONCLUSIONS

Optimizing MLOps for high-load product recommendation
systems requires shifting from static pipeline paradigms to
dynamic, reactive, and hardware-aware architectures. The
analysis conducted allows the following key conclusions and
recommendations to be formulated.

Data consistency must be ensured at the architectural level
by introducing a Feature Store that supports streaming
aggregationsandbyusingoptimizedin-memorystores (Redis,
RonDB, OpenMLDB) for inference. The embedding scale
problem is effectively addressed by employing hierarchical
parameter servers (HPS) that utilize the whole memory
hierarchy (GPU HBM — RAM — SSD) in conjunction with
quantization techniques and dynamic vector dimensionality
selection.

Maximizing inference throughput is achieved through
dynamic request batching and the use of specialized servers
(NVIDIA Triton) that support concurrent model execution
and optimized backends (TensorRT). Adaptivity to change is
ensured by transitioning to incremental or online training,
backed by architectures for fast model update delivery
(Ekko/Monolith-type systems) and continuous concept drift
monitoring.

The future development of this area is inextricably linked
to the integration of Large Language Models (LLMs) into
recommendation pipelines (Generative RecSys). This
will require adapting optimization methods developed
for LLMs (KV caching, PagedAttention) to the specifics
of recommendation tasks, as well as further evolution of
hardware accelerators for efficient sparse-data processing.
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