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In this paper we obtained some spherically stellar configurations that represent new models of dark energy stars specifying 
particular forms for gravitational potential and the electric field intensity which allows solve the Einstein-Maxwell field 
equations. We have chosen the metric potential proposed by Buchdahl (1959) with the equation of state rp ωρ=  where rp

 

is the radial pressure, ρ is the dark energy density and ω is the dark energy parameter. We found that the radial pressure, 
the anisotropy factor, energy density, metric coefficients, mass function, charge density are regular and well behaved in 
the stellar interior but the causality conditions and of strong energy are not satisfied. These models have great application 
in physics and cosmology due to the fact that several independent observations indicate that the universe is in a phase of 
accelerated expansion which can be explained by the presence of dark energy that has not been detected. 
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Abstract

Introduction
Recent observational evidence as measurements of 
supernovas of type Ia and microwave background radiation 
suggest a accelerate expansion of the universe [1] and 
the explanation for this cosmological behavior requires 
assuming that a considerable part of the universe consists 
of a hypothetical dark energy with a negative pressure 
component [2], which is a cosmic fluid parameterized by 
an equation of state ω = p/ρ < -1/3 where p is the spatially 
homogeneous pressure and ρ the dark energy density [1-4]. 
The range for which ω < -1 has been denoted phantom 
energy and possesses peculiar properties, such as negative 
temperatures and the energy density increases to infinity in 
a finite time, resulting in a big rip [2-4]. It also provides a 
natural scenario for the existence of exotic geometries such 
as wormholes [5-7].

The notion of dark energy is that of a homogeneously 
distributed cosmic fluid and when extended to 
inhomogeneous spherically symmetric spacetimes, the 
pressure appearing in the equation of state is now a 
negative radial pressure, and the tangential pressure is then 
determined via the field equations [8,9]. Lobo [9] explored 
several configurations, by imposing specific choices for the 
mass function and studied the dynamical stability of these 
models by applying the general stability formalism developed 
by Lobo and Crawford [10]. Chan et al. [14] propose that the 
mass function is a natural consequence of the Einstein´s 
field equations and considered a core with a homogeneous 
energy density, described by the Lobo´s first solution [9]. 
Malaver and Esculpi [11] presented a new model of dark 
energy star by imposing specific choice for the mass function 
that correspond an increase in energy density inside of the 
star. Bibi et al. [12] obtained a new class of solutions of 

the Einstein-Maxwell field equations which represents a 
model for dark energy stars with the equation of state pr=-ρ. 
Malaver et al. [13] found a new family of solutions to the 
Einstein-Maxwell system considering a particular form of 
the gravitational potential Z(x) and the electric field intensity 
with a linear equation of state that represents a model of 
dark energy star. Malaver and Kasmaei [14] generated a dark 
energy star model with a quadratic equation of state and a 
specific charge distribution. According Chan et al. [15] the 
denomination dark energy is applied to fluids which violate 
only the strong energy condition (SEC) given by ρ+pr+2pt ≥ 0 
where ρ is the energy density, pr and pt are the radial pressure 
and tangential pressure, respectively.

The analysis of compact objects with anisotropic matter 
distribution is very important, because that the anisotropy 
plays a significant role in the studies of relativistic spheres 
of fluid [16-30]. Anisotropy is defined as t rp p∆ = −  where 

rp  is the radial pressure and tp  is the tangential pressure. 
The existence of solid core, presence of type 3A superfluid 
[31], magnetic field, phase transitions, a pion condensation 
and electric field [30] are most important reasonable facts 
that explain the presence of tangential pressures within 
a star. Many astrophysical objects as X-ray pulsar, Her 
X-1, 4U1820-30 and SAXJ1804.4-3658 have anisotropic 
pressures. Bowers and Liang [32] include in the equation 
of hydrostatic equilibrium the case of local anisotropy. 
Feroze and Siddiqui [33], Malaver [34-35] and Sunzu et 
al.[23] obtained solutions of the Einstein-Maxwell field 
equations for charged spherically symmetric space-time by 
assuming anisotropic pressure. Bhar et al. [36] have studied 
the behavior of relativistic objects with locally anisotropic 
matter distribution considering the Tolman VII  form for the 
gravitational potential with a linear relation between the 
energy density and the radial pressure.
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Several mathematical modeling within the framework of 
the general theory of relativity has been used to explain the 
behavior and structure of massive objects as neutron stars, 
quasars, black holes, pulsars and white dwarfs [1,2] and 
requires finding the exact solutions of the Einstein-Maxwell 
system [3]. A detailed and systematic analysis was carried 
out by Delgaty and Lake [4] which obtained several analytical 
solutions that can describe realistic stellar configurations. 

Recently, astronomical observations of compact objects 
have allowed new findings of neutron stars and strange 
stars that adjust to the exact solutions of the 4-D Einstein 
field equations and the data on mass maximum, redshift and 
luminosity are some of the most relevant characteristics for 
verifying the physical requirements of these models [37].  A 
great number of exact models from  the Einstein-Maxwell 
field equations have been generated by Mafa Takisa and 
Maharaj [18], Malaver and Kasmaei [14], Malaver [19,20], 
Ivanov [22] and Sunzu et al [23]. In the development of 
these models, several forms of equations of state can be 
considered [24]. Komathiraj and Maharaj [25], Malaver 
[26], Bombaci [27], Thirukkanesh and Maharaj [28], Dey et 
al. [29] and Usov [30] assume linear equation of state for 
quark stars. Feroze and Siddiqui [33] considered a quadratic 
equation of state for the matter distribution and specified 
particular forms for the gravitational potential and electric 
field intensity. MafaTakisa and Maharaj [18] obtained new 
exact solutions to the Einstein-Maxwell system of equations 
with a polytropic equation of state. Thirukkanesh and Ragel 
[38] have obtained particular models of anisotropic fluids 
with polytropic equation of state which are consistent 
with the reported experimental observations. Malaver [39] 
generated new exact solutions to the Einstein-Maxwell 
system considering Van der Waals modified equation of 
state with polytropic exponent. Tello-Ortiz et al. [40] found 
an anisotropic fluid sphere solution of the Einstein-Maxwell 
field equations with a modified version of the Chaplygin 
equation of state. More recently, Prasad et al.[41] proposed a 
new model of an anisotropic compact star which admits the 
Chaplygin equation of state considering the metric potential 
of Buchdahl [42]. 

The aim of this paper is to generate new class of solutions 
which represents a potential model of dark energy stars 
whose equation of state is rp ωρ=

 with anisotropic matter 
distribution, specifying particular forms for the gravitational 
potential and the electric field intensity. We have used the 
ansatz proposed by Buchdahl [42]. The system of field 
equations has been solved to obtain analytic solutions which 
are physically acceptable. We assume that the denomination 
dark energy is applied to fluids which violate the strong 
energy condition [15]. This article is organized as follows, 
in Section 2, we present Einstein´s field equations. In Section 
3, we make a particular choice of gravitational potential Z(x) 
that allows solving the field equations and we have obtained 
new models for dark energy stars consistent alone of dark 
matter. In Section 4, a physical analysis of the new solutions 
is performed. Finally in Section 5, we conclude.

Einstein-Maxwell Field Equations
We consider a spherically symmetric, static and homogeneous 
spacetime. In Schwarzschild coordinates the metric is given 
by 

    (1)

where )(rν  and )(rl are two arbitrary functions. 

The Einstein field equations for the charged anisotropic 
matter are given by 
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where ρ  is the energy density, rp is the radial pressure, E  is 
electric field intensity,

tp is the tangential pressure and primes denote 
differentiations with respect to r. Using the transformations, x 
= cr2, Z(x) = e-2l(r) and A2y2(x) = e2v(r) with arbitrary constants 
A and c>0, suggested by Durgapal and Bannerji [43], the 
Einstein field equations can be written as

                                                                           (6)

                                                                                                              (7)
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σ  is the charge density, rt pp −=∆  is the anisotropic factor 
and dots denote differentiation with respect to x. With the 
transformations of [43], the mass within a radius r of the 
sphere takes the form 

                                                    (12)
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The interior metric (1) with the charged matter distribution 
should match the exterior spacetime described by the 
Reissner-Nordstrom metric: 

  (13)

where the total mass and the total charge of the star are 
denoted by M and q2, respectively. The junction conditions at 
the stellar surface are obtained by matching the first and the 
second fundamental forms for the interior metric (1) and the 
exterior metric (13). 

In this paper, we assume thefollowing equation of state 
rp ωρ= (14)
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where ω is the dark energy parameter.

A New Class of Models
In order to solve the Einstein field equations, we have chosen 
specific forms for the gravitational potential Z(x) and the 
electrical field intensity E. Following Buchdahl [42] and 
Ngubelanga et al.[44] we have taken the forms, respectively 

( )
(1 )

K xZ x
K x

+
=

+
                                                                          (15)
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where K is a parameter related to the geometry of the star 
and a, b are real constants. The metric potential is regular at 
the origin and well behaved in the interior of the sphere. The 
electric field is finite at the center of the star and remains 
continuous in the interior.

Substituting (15) and (16) in (7) we obtain 
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Replacing (17) in (14), we have for the radial pressure
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Using (17) in (12), the expression of the mass function is
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With (15) and (16) in (11) , the charge density is
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With (15), (16) and (17), the eq. (8) becomes
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Integrating (21), we obtain 
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The anisotropy factor ∆ is given by for 
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Conditions of Physical Acceptability 
For a model to be physically acceptable, the following 
conditions should be satisfied [4,38]: 

(i) The metric potentials l2e and ν2e assume finite values 
throughout the stellar interior and are singularity-free at the 
center r=0. 

(ii) The energy density ρshould be positive and a decreasing 
function inside the star .

(iii) The radial pressure also should be positive and a 
decreasing function of radial parameter but for negative 
pressure this condition is not satisfied. 

(iv) The density gradient 0d
dr

ρ ≤  for 0 r R≤ ≤  . 

(v) The anisotropy is zero at the center r=0, i.e. Δ(r=0) =0. 

(vi) Any physically acceptable model must satisfy the causality 
condition, that is, for the radial sound speed 2 r

sr
dpv
dρ

= ,we 
should have 20 1srv≤ ≤  but the dark energy case this condition 
nor is it satisfied.

(vii) The consideration of dark energy is applicable only to 
fluids that violate the strong

energy condition.

(viii) The charged interior solution should be matched with 
the Reissner–Nordström exterior solution, for which the 
metric is given by the equation (13). 

The conditions (ii) and (iv) imply that the energy density 
must reach a maximum at the centre and decreasing towards 
the surface of the sphere.

Physical Analysis the New Models
 For the new solutions, metric potentials l2e and ν2e have 
finite values and remain positive throughout the stellar 
interior. At the center ( )2 0 1e l =  and ( )2 0 2 2 2

1
Be A c Kν = . We show 

that in r=0 ( ) ( ) 00
)(2

0
)(2 =

′
=

′
== r

r
r

r ee νl  and this makes is possible 
to verify that the gravitational potentials are regular at the 
center. 

The energy density is positive and well behaved between the 
center and the surface of the star. In the center ( )3 1
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c K

r
K

ρ
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= =  
and ( )3 1
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= = , therefore the energy density will be non-
negative in r=0 and ( 0)rp r =  < 0 . 

For the density gradient inside the stellar interior, we obtain
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On the boundary r=R, the solution must match the Reissner–
Nordström exterior space–time as: 

(16)
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Then for the matching conditions, we obtain: 
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Also in r=Rthe radial pressure 0rp =  and we have 

( ) ( ) ( )4 8 3 6 2 4 22 2 1 3 3 0bKc R a b Kc R a b Kc R K aK cR K+ + + + − − − − + =  (34) 

In the figures 1, 2 and 3 are represented the dependence of 
ρ  , d

dr
ρ  and 2σ  with the radial coordinate for two different 

values of K. In all the cases was it has been considered a=0.5 
b=0.2, , c=1.

Figure 1. Energy density against radial coordinate for K=- 
1.5 (solid line); K=10 (long-dash line with a=0.5, b=0.2 and 

c=1.

Figure 2. Density gradient against radial coordinate for 
K=-1.5 (solid line); K=10 (long-dash line) with a=0.5, b=0.2 

and c=1. 

Figure 3. Charge density against radial parameter for K=-
1.5 (solid line); K=10 (long-dash line) with a=0.5, b=0.2 and 

c=1. 

For different values of parameter K, the energy density 
remains positive, continuous and is monotonically 
decreasing function throughout the stellar interior as noted 
in the Figure 1. It is also seen that the density decreases with 
increasing K. The radial variation of energy density gradient 
has been shown in Figure 2, in which it is observed that d

dr
ρ

< 0 in the two cases. In the Figure 3 the charge density is a 
continuously decreasing function inside the star for K= -1.5 
but for K=10 has a small decrease and then slightly increases 
with the radial parameter. 

The Figures 4,5, 6 and 7 show the dependence of M(r),  Pr , 
anisotropy Δ and strong energy condition (SEC) respectively 
with the radial parameter for K=-1.5 and different values of 
ω . In all the cases it has been considered a=0.5, b=0.2 and c 
= 1 . 

Figure 4. Mass function against radial parameter for K=-1.5 
with a=0.5, b=0.2 and c=1. 
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Figure 5. Radial pressure against radial coordinate for ω=-1 
(solid line); ω=-0.75 (long-dash line): ω=-0.5 (dashdot line). 

In all the cases K=-1.5 with a=0.5, b=0.2 and c=1.

Figure 6. Anisotropy against radial coordinate for ω=-1 
(solid line); ω=-0.75 (long-dash line): ω=-0.5 (dashdot line). 

In all the cases K=-1.5 with a=0.5, b=0.2 and c=1.

Figure 7. SEC against radial coordinate for ω=-1 (solid 
line); ω=-0.75 (long-dash line): ω=-0.5 (dashdot line). In all 

the cases K=-1.5 with a=0.5, b=0.2 and c=1.

In figure 4, the mass function is continuous, strictly increasing 
and well behaved well behaved and the radial pressure is 
negative and not a decreasing function of the radial parameter 
but takes higher values when ω is increased as shown in 
Figure 5. The anisotropic factor is plotted in Figure 6 and it 
shows that vanishes at the centre of the star, i.e. Δ(r=0) =0. 
We can also note that Δ admits higher values with a growth 
of ω . The Figure 7 shows that the strong energy condition is 
violated for all ω values considered when K=-1.5.

In the figures 8, 9, 10 and 11 has been represented the 
variation of M(r), Pr, anisotropy Δ and strong energy 
condition (SEC) with the radial coordinate for the different 
values of the dark energy parameter ω. In these cases K=10, 
a=0.5, b=0.2 and c=1. 

Figure 8. Mass function against radial parameter for K=10 
with a=0.5, b=0.2 and c=1. 

Figure 9. Radial pressure against radial parameter for ω=-1 
(solid line); ω=-0.75 (long-dash line): ω=-0.5 (dashdot line). 

In all the cases K=10 with a=0.5, b=0.2 and c=1. 
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Figure 10. Anisotropy against radial parameter for ω=-1 
(solid line); ω=-0.75 (long-dash line): ω=-0.5 (dashdot line). 

In all the cases K=10 with a=0.5, b=0.2 and c=1. 

Figure 11. SEC against radial parameter for ω=-1 (solid 
line); ω=-0.75 (long-dash line): ω=-0.5 (dashdot line). In all 

the cases K=10 with a=0.5, b=0.2 and c=1. 

In Figure 8, the mass function also is continuous, increasing, 
takes finite values and well behaved in the stellar interior 
and in the Figure 9 the radial pressure is negative at the 
center r=0 and its value grows when ω increases. 	 In Figure 
10 the anisotropy also vanishes at the center and decreases 
for high values of ω. For all ω values considered, the violation 
of the strong energy condition is satisfied as noted in Figure 
11.

Conclusion 
In this paper we have found new class of solutions which 

represents a model for dark energy stars with a gravitational 
potential proposed for Buchdahl. The radial pressure, 
energy density, anisotropy, mass function, charge density 
and all the coefficients of the metric behaves well inside the 
stellar interior and are free of singularities. In this model, the 
consideration of dark energy star is applied only to the cases 
where parameter ω not satisfy the strong energy condition. 
The obtained solutions match smoothly with the exterior 
of the Reissner–Nordström spacetime at the boundary r=R, 
because matter variables and the gravitational potentials of 
this work are consistent with the physical analysis of these 
stars. The new models satisfy all the requirements for a 
compact negative energy stellar object and may be used to 
model relativistic configurations in different astrophysical 
scenes.
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