
Page | 22www.ulopenaccess.com

ISSN: 3065-0003 | Volume 2, Issue 2

Open Access | PP: 22-27

DOI: https://doi.org/10.70315/uloap.ulirs.2025.0202003

Universal Library of Innovative Research and Studies Research Article

Methods for Minimizing Request Processing Latency in Microservices
Architecture
Artem Iurchenko
Senior Software Engineer at Dexian, Atlanta, USA.

Citation: Artem Iurchenko, “Methods for Minimizing Request Processing Latency in Microservices Architecture”, Universal
Library of Innovative Research and Studies, 2025; 2(2): 22-27. DOI: https://doi.org/10.70315/uloap.ulirs.2025.0202003.

The article examines the issue of reducing request processing latency in a microservices architecture deployed in a cloud
environment. Key factors contributing to increased latency are identified, including frequent inter-service communication,
uneven distribution of computational resources, and the lack of a comprehensive fault-tolerance strategy. A scheduling
strategy based on a modified particle swarm optimization (PSO) algorithm and an extended Round Robin (RR) algorithm
is proposed. The modified PSO accounts for the microservices call graph and the physical proximity of nodes within
predefined threshold constraints, while the RR algorithm ensures balanced load distribution and eliminates single points of
failure. The effectiveness of the approach was evaluated using datasets (traces) from Alibaba and Google, reflecting real-
world microservices operation scenarios. Experimental results demonstrated a reduction in network traffic (up to 35%),
a decrease in latency (by 80% or more in static scenarios), and a more uniform resource utilization (reducing standard
deviation by 40–50%). To apply the described methodology (PSO+RR), it should be integrated with an orchestration system
(Kubernetes), achieving a systematic improvement in both performance and fault tolerance. The findings presented in
this article are intended for system architects, developers, and DevOps engineers seeking to optimize microservices system
performance by minimizing request processing latency. The results can be incorporated into existing DevOps practices and
applied in large data centers.

Keywords: Microservices, Cloud Computing, Latency, Particle Swarm Optimization, Scheduling, Load Balancing, Fault
Tolerance, Kubernetes.

Abstract

Introduction
The development of cloud computing and microservices
architecture has fundamentally transformed the approach to
designing and operating high-load applications. Microservices,
where each service is represented as a small, loosely coupled
container, have simplified the scaling of system components,
enabled rapid modifications, and ensured high availability.
Cloud service providers such as Google Cloud, Amazon
ECS, and IBM Cloud offer infrastructure that supports the
continuous operation of numerous microservices [1, 4].

However, microservices architecture also presents significant
challenges. First, frequent network interactions between
microservices increase the risk of network congestion
and delays in request processing. Second, monitoring and
resource allocation become more complex due to dynamic
container migration and scaling, as well as fluctuating Central
Processing Unit (CPU) and memory demands over time [1,
4]. These factors necessitate the development of specialized
scheduling and load-balancing strategies to reduce latency
while maintaining high service availability.

Several studies have focused on reducing network overhead
to improve microservices distribution. For example,
Alibaba’s experience, described in an online resource [1],
demonstrates how system scalability and fault tolerance
can be enhanced by decomposing monolithic applications
into independent services, allowing efficient management
of high workloads. Similarly, Balalaie A., Heydarnoori A., and
Jamshidi P. [2] highlight the importance of integrating DevOps
methodologies for successful cloud migration, ensuring
flexibility and rapid adaptation to changing operational
conditions. A comprehensive review of principles, patterns,
and migration challenges presented by Velepucha V. and
Flores P. [5] further systematizes knowledge in application
decomposition, identifying key challenges in transitioning
from monolithic to microservices-based systems.

Alelyani A., Datta A., and Hassan G. M. [3] propose a dynamic
microservices distribution strategy aimed at improving
fault tolerance and reducing network traffic, which in turn
minimizes request processing delays. Meanwhile, Li X. et al.
[7] introduce a topology-aware framework that considers

Page | 23Universal Library of Innovative Research and Studies

Methods for Minimizing Request Processing Latency in Microservices Architecture

service distribution within cloud infrastructure to optimize
inter-service communication. The practical implementation
of these methods is confirmed by the use of tools such as
Kubernetes Scheduler [6] for computational task scheduling
and Cloud Trace [4] for latency monitoring, enabling detailed
analysis and real-time system management.

The study by Alelyani A., Datta A., and Hassan G. M. [8]
focuses on optimizing cloud computing performance through
microservices scheduling strategies. The proposed approach
is based on analyzing service characteristics and utilizing
intelligent scheduling algorithms to respond to changing
cloud workload conditions.

Despite these advancements, a research gap remains in the
existing literature: modern studies either concentrate on
macro-level architectural changes or rely on static resource
allocation methods without sufficiently integrating dynamic
monitoring systems with adaptive real-time scheduling
algorithms. This limitation reduces the effectiveness of
developed methods under rapidly changing load and
network conditions, which are characteristic of modern
cloud infrastructures.

The objective of this study is to develop and justify a new
methodology for dynamic adaptive scheduling aimed at
minimizing request processing latency in microservices
architecture within cloud systems.

The scientific novelty lies in integrating topology-aware
computational task distribution with real-time monitoring
systems, ensuring optimal resource utilization and improving
system fault tolerance.

The research hypothesis suggests that a combined approach,
incorporating dynamic network state evaluation and adaptive
task distribution, significantly reduces latency compared to
traditional static scheduling methods.

To test this hypothesis and achieve the research objective,
the following methodological approach is employed:
data collection, mathematical modeling and algorithm
development, integration with containerization platforms,
and experimental validation.

Research results

Microservices architecture offers extensive scalability
and update flexibility since each service is deployed in an
independent container and can be maintained and updated
separately. However, as interactions between microservices
become more complex, the risk of increased network latency
and excessive resource consumption grows. In recent years,
several approaches have been proposed to mitigate these
overhead costs, including:

Optimization of deployment topology. Approaches 1.	
that account for the microservices dependency graph
(Call Graph) aim to place interdependent services on
physically close nodes, reducing the number of inter-

node transitions and, consequently, network latency. For
instance, within the MOTAS concept, the microservices
graph is divided into hierarchical clusters to confine
high-intensity traffic within specific node groups.

Utilization of orchestration tools (Kubernetes, Docker 2.	
Swarm) with extended plugins. Standard Kubernetes
mechanisms, such as Deployment and Service, simplify
the management of microservices’ lifecycle but do
not always consider network proximity. To address
this, scheduler extenders and custom controllers are
proposed, which analyze physical machine load, the
placement of “neighboring” microservices, network
metrics, and potential Service Level Agreement (SLA)
constraints [6].

Heuristic and intelligent scheduling algorithms (PSO, 3.	
genetic algorithms). Research indicates that particle
swarm optimization methods, when enhanced,
can accommodate both the distributed nature of
microservices and real-time resource monitoring
metrics. A crucial aspect is the correct selection of a
fitness function, incorporating network metrics (latency,
bandwidth) and fault tolerance criteria.

Thus, there is a trend toward comprehensive approaches
combining network interaction analysis, dynamic resource
monitoring, and load balancing, highlighting the need for
continued research in this area [1, 4, 6].

A key feature of microservices architecture is its reliance
on frequent service-to-service communication. Data
exchange within cloud data centers can introduce significant
overhead, particularly when tightly coupled microservices
are distributed across different modules.

Network topology. Most modern data centers use a •	
Fat-tree (or Clos) architecture, theoretically providing
high bandwidth through multiple paths between nodes.
However, under practical loads, network switches at the
aggregation or core levels become bottlenecks, limiting
network bandwidth and increasing latency due to traffic
congestion [1].

Microservices interaction speed. Remote Procedure •	
Call (RPC) and RESTful call patterns require constant
data exchange, causing the total number of transmitted
packets to grow exponentially as the number of
microservices increases [4].

Fault tolerance level. To improve reliability and •	
availability, microservices are often replicated,
generating additional network traffic between replicas
and source services [7].

To systematize the existing approaches in latency reduction,
load balancing, and fault tolerance, Table 1 presents a
comparative analysis of different strategies.

Page | 24Universal Library of Innovative Research and Studies

Methods for Minimizing Request Processing Latency in Microservices Architecture

Table 1. Comparison of approaches to reducing latency and improving resource allocation efficiency [4-7].

Approach Key Concept Advantages Limitations
Hierarchical partitioning
mystery of time and
space(MOTAS)

Dividing microservices
into groups within a
shared dependency graph

Reduces inter-group traffic, clear
management structure

Does not account for dynamic
load changes, requires static
graph analysis

Scheduler extender in
Kubernetes

Extending the standard
scheduler with additional
plugins

Flexible integration with
Kubernetes, considers network
metrics and resource utilization

Requires real-time monitoring
setup, increases management
complexity

Modified PSO (particle
swarm optimization)

Heuristic search for
optimal service placement
across nodes

Fast convergence in large
clusters, ability to consider
multiple criteria simultaneously

May get stuck in local optima,
requires parameter tuning
(velocity, inertia weight, etc.)

Round-robin with
resource awareness

Load distribution across
servers in a cyclic manner
with thresholds

Simple implementation, effective
under minor load fluctuations

May not consider network
latency factors and complex
microservices dependencies

Replication with fault
tolerance and SLA
considerations

Duplicating critical
microservices across
multiple nodes

Eliminates single points of
failure, enhances overall
availability

Increases total traffic,
complicates management,
requires an advanced node
selection strategy

As shown in Table 1, several approaches offer strong
advantages, such as latency reduction (e.g., MOTAS in static
graph analysis) and improved availability (replication).
However, none of the listed methods independently solve
the combined challenge of minimizing network latency,
balancing resources, and ensuring high fault tolerance. This
confirms the need for further research aimed at developing a
comprehensive strategy that integrates heuristic algorithms
(e.g., modified PSO), distributed scheduling mechanisms (e.g.,
round-robin with dynamic thresholds), and orchestration
tools at the Kubernetes level.

Thus, the next section will introduce an original concept that
combines microservices replication with load and network
topology awareness. This approach aims to simultaneously
reduce network latency and minimize single points of failure,
which is particularly relevant for large-scale cloud systems.

Proposed Methods and Scheduling Strategy for
Reducing Latency

The particle swarm optimization algorithm was originally
proposed for solving continuous optimization problems.
In its classical form, PSO models particles “swarming” in a
multidimensional solution space, where each particle stores
its current position and velocity while considering the
best solutions found both individually and by the swarm.
In microservices scheduling, this approach is applied to
determine the “optimal” placement of services across
physical machines (Particles → Microservices deployment
options), thereby reducing latency and improving resource
utilization [2, 3].

However, classical PSO does not account for:

The microservices dependency graph (Call Graph), 1.	
which determines which services interact frequently.

Fault tolerance constraints that require replication of 2.	
critical microservices across different nodes [7].

The risk of network congestion when a large number of 3.	
interdependent microservices are deployed at opposite
ends of a data center [1].

Key PSO modifications in the proposed approach:

Dependency clustering. Before PSO execution, a subset of 1.	
microservices closely related to the target microservice
(e.g., a subservice handling requests) is formed. This
“localizes” the search space and reduces the probability
of particles unnecessarily jumping to nodes that are
inefficient in terms of network latency [3].

Fault tolerance awareness. During microservice 2.	
replication or migration, the algorithm verifies whether
critical services are already present on a given physical
machine (PM). This prevents the “single point of failure”
scenario in the event of PM failure.

Additional component in the fitness function. The 3.	
classical fitness function considers “personal” and
“global” optima. A network cost factor is introduced:
the higher the number of inter-node “hops” (or
the greater the total latency) in interactions with
dependent microservices, the lower the fitness score. If
a microservice can be placed closer to its dependencies
without exceeding CPU/memory utilization thresholds,
the solution’s overall fitness improves.

Velocity clamping. In classical PSO, particle velocity 4.	
can increase rapidly, causing particles to “overshoot”
optimal solutions. A velocity cap is introduced to ensure
slower movement, allowing the swarm to explore the
vicinity of potential optimal solutions more thoroughly.
This technique is often used in solving discrete or mixed
scheduling problems.

To illustrate the key differences between classical PSO and
the modified PSO in the context of microservices scheduling,
Table 2 presents a comparative analysis.

Page | 25Universal Library of Innovative Research and Studies

Methods for Minimizing Request Processing Latency in Microservices Architecture

Table 2. Comparison of Classic PSO and Modified PSO for Microservices [3, 5, 6].

Criterion Classic PSO Modified PSO
Dependency graph
awareness

Not considered. Particles search uniformly
across the entire solution space

A subset of particles is directed toward nodes close
to dependent microservices (Call Graph analysis),
reducing network “hops”

Fault tolerance Not explicitly considered. Placement may be
“random,” leading to a single point of failure

Critical service presence on a PM is verified; duplication
of critical microservices on the same node is avoided

Fitness function Considers only “personal” and “global” optima
(e.g., minimizing total resource costs)

Includes a network latency component and a load
threshold factor to prevent SLA violations

Velocity control Particle velocity can increase without strong
constraints

A velocity cap is introduced to allow more thorough
exploration of solution areas

Scalability Good, but prone to local optima in complex
spaces

Enhanced scalability and reduced risk of local optima
by considering network and resource profiles of the
cloud cluster

Thus, when properly implemented and configured (adjusting
inertia weight, maximum velocity, load thresholds,
etc.), the modified PSO demonstrates improved results
by simultaneously considering network and resource
constraints.

After determining an “acceptable” set of physical machines
for microservices (the output of the modified PSO), it is
necessary to evenly distribute replicas and new containers
across servers [7]. For this purpose, the Round Robin
(RR) algorithm is used, enhanced with the following
modifications:

Dynamic CPU/memory utilization threshold. If a node 1.	
(PM) already exceeds a predefined threshold (e.g.,
70% CPU and 75% memory), RR “skips” this node and
proceeds to the next one in the cycle without attempting
to allocate another container there. Load data is collected
from real-time monitoring systems.

Prioritization of nodes closer to dependent microservices. 2.	
From the set of candidates proposed by PSO, the nearest
available node is selected (provided that its resource
utilization threshold is not exceeded). If all “close” nodes
are overloaded, the RR algorithm moves to the “next tier”
of nodes, and so on.

Replication awareness. If it is necessary to deploy 3.	 n
replicas of a microservice, the RR algorithm distributes
them cyclically across eligible nodes to prevent excessive
concentration of replicas on a single PM [1].

This combination of PSO and RR prevents situations where
a service is “ideally” placed in terms of latency reduction
but ultimately overloads a node, leading to the risk of SLA
violations. Additionally, it supports more flexible load
balancing, which is crucial for systems with a large number
of microservices and unpredictable load spikes [4].

To ensure the practical applicability of the described
methodology (PSO+RR), it must be integrated with an
orchestration system. The most widely used platform is
Kubernetes, which already provides:

Containerization (Pods, Deployments, Services);•	

Scaling (ReplicaSet, Horizontal Pod Autoscaler);•	

Scheduler extensions (Scheduler Extender, Plugins).•	

Below, Figure 1 illustrates the stages of integrating the PSO
and RR combination.

Fig.1. The stages of integration of the combination of PSO
and RR [6].

Experimental Validation and Results

This section describes the methodology for experimentally
validating the proposed scheduling strategy, the datasets used
for simulation, and key results along with their interpretation.
To simulate real-world microservices deployment scenarios,
two primary datasets were used:

Alibaba Trace. Published by Alibaba Inc. [1], this dataset 1.	
reflects the operation of a large-scale cluster utilizing a
microservices architecture and includes the following
types of data:

Identifiers of virtual machines (VMs) and containers, ○	
their timestamps, and resource usage parameters (CPU,
memory);

Page | 26Universal Library of Innovative Research and Studies

Methods for Minimizing Request Processing Latency in Microservices Architecture

Call Graphs indicating dependencies between ○	
microservices;

Network traffic intensity between data center nodes ○	
(Fat-tree topology).

Google Trace. Provided by Google Cloud Docs [4] within 2.	
the Borg system. It covers distributed computing tasks
and CPU/memory usage information. Unlike the Alibaba
dataset, it does not include data on microservices
dependencies; therefore, dependencies were
artificially generated based on probabilistic interaction
distributions. This dataset allows the evaluation of the

strategy’s behavior under more dynamic loads and a
high frequency of microservice restarts.

In all experiments, it was assumed that the Kubernetes
orchestration system managed clusters consisting of several
hundred physical machines (PMs) distributed in a Fat-tree
topology. To validate the proposed scheduling strategy
(PSO+RR), two types of scenarios were considered. For a
comprehensive illustration, Table 3 presents a comparative
analysis of three approaches: (1) classical Kubernetes,
(2) PSO with an adaptive threshold (without considering
network proximity), and (3) the PSO+RR strategy.

Table 3. Comparative analysis by three metrics. (compiled independently based on [1, 4, 6, 7, 8]).

Metric Classical Kubernetes Scheduler PSO with Adaptive
Threshold

PSO+RR (Proposed
Strategy)

Reduction in Network Traffic (relative to
the initial state), %

10–12% 18–21% 33–36%

Average Latency Reduction, % 30–35% 55–60% 81–84%
Standard Deviation of CPU Utilization 25–30 (arbitrary units) 18–22 12–14

As seen in Table 3, the classical Kubernetes scheduler does
not account for network proximity, leading to only moderate
performance improvements. PSO with an adaptive threshold
primarily focuses on resource management but does not
sufficiently optimize network communication. The proposed
strategy (PSO+RR) achieves the best reduction in network
traffic and latency while also achieving more balanced CPU/
memory utilization.

The experiments demonstrate that the modified scheduling
strategy, which considers the microservice dependency
graph, resource thresholds, and load balancing, yields higher
performance across all three metrics.

Ultimately, the results confirm the hypothesis that the
combined use of modified PSO (which considers the network
structure) and adaptive Round Robin (which accounts
for resource thresholds) allows for a comprehensive
minimization of latency, balanced load distribution, and
enhanced fault tolerance in microservice environments.

Conclusion
The conducted research has demonstrated the effectiveness
of a comprehensive microservice scheduling strategy that
combines a modified particle swarm optimization (PSO)
algorithm with an enhanced load distribution mechanism
(Round Robin) while incorporating network topology
proximity principles. This approach addresses several key
challenges:

Reduction of network latency by placing closely 1.	
related microservices on physically adjacent nodes and
minimizing inter-node transitions.

Load balancing based on dynamic resource utilization 2.	
thresholds (CPU, memory), preventing localized
overloads.

Increased fault tolerance by preventing the co-location3.	

of critical services on the same node and ensuring even
replication distribution.

Experiments conducted on Alibaba and Google datasets
showed that the proposed strategy outperforms the classical
Kubernetes scheduler and other baseline heuristic methods.
A significant reduction in overall network traffic was observed
(up to 33–36% in static scenarios), with latency decreasing
by more than 80% in some cases. At the same time, resource
utilization levels increased, and the standard deviation of
load distribution was nearly halved, indicating more efficient
resource usage and reduced risk of SLA violations.

Thus, the proposed approach is highly relevant for large-scale
cloud clusters where minimizing network latency, improving
system availability, and optimizing hardware utilization are
critical requirements. Future extensions of this methodology
may include the integration of machine learning algorithms
(such as Q-learning or other reinforcement learning
techniques) for predictive microservice scheduling based
on historical load data and evolving service dependency
structures.

References
Microservice Architecture of Alibaba. [Electronic 1.	
resource] Access mode: https://www.abhishek-tiwari.
com/microservice-architecture-of-alibaba / (date of
access: 02/03/2025).

Balalaie A., Heydarnoori A., Jamshidi P. Microservices 2.	
architecture enables devops: Migration to a cloud-native
architecture //Ieee Software. – 2016. – Vol. 33 (3). – pp.
42-52.

Alelyani A., Datta A., Hassan G. M. Optimizing Cloud 3.	
Performance: A Microservice Scheduling Strategy for
Enhanced Fault-Tolerance, Reduced Network Traffic,
and Lower Latency //IEEE Access. – 2024.- Vol.12. – pp.
35135–35153.

Page | 27Universal Library of Innovative Research and Studies

Methods for Minimizing Request Processing Latency in Microservices Architecture

Cloud Trace overview . [Electronic resource] Access 4.	
mode: https://cloud .google.com/trace/docs/overview
(date of request: 02/03/2025).

Velepucha V., Flores P. A survey on microservices 5.	
architecture: Principles, patterns and migration
challenges //IEEE Access. – 2023. – Vol.11. – pp. 88339-
88358/

Kubernetes Scheduler. [Electronic resource] Access 6.	
mode: https://kubernetes.io/docs/concepts/
scheduling-eviction/kube-scheduler /(date of access:
02/03/2025).

Li X. et al. Topology-aware scheduling framework for 7.	
microservice applications in cloud //IEEE Transactions
on Parallel and Distributed Systems. – 2023. – Vol. 34
(5). – pp. 1635-1649.

Alelyani A., Datta A., Hassan G. M. Optimizing Cloud 8.	
Performance: A Microservice Scheduling Strategy for
Enhanced Fault-Tolerance, Reduced Network Traffic,
and Lower Latency //IEEE Access. – 2024. – pp.1-10.

Copyright: © 2025 The Author(s). This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

