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The article examines the issue of reducing request processing latency in a microservices architecture deployed in a cloud 
environment. Key factors contributing to increased latency are identified, including frequent inter-service communication, 
uneven distribution of computational resources, and the lack of a comprehensive fault-tolerance strategy. A scheduling 
strategy based on a modified particle swarm optimization (PSO) algorithm and an extended Round Robin (RR) algorithm 
is proposed. The modified PSO accounts for the microservices call graph and the physical proximity of nodes within 
predefined threshold constraints, while the RR algorithm ensures balanced load distribution and eliminates single points of 
failure. The effectiveness of the approach was evaluated using datasets (traces) from Alibaba and Google, reflecting real-
world microservices operation scenarios. Experimental results demonstrated a reduction in network traffic (up to 35%), 
a decrease in latency (by 80% or more in static scenarios), and a more uniform resource utilization (reducing standard 
deviation by 40–50%). To apply the described methodology (PSO+RR), it should be integrated with an orchestration system 
(Kubernetes), achieving a systematic improvement in both performance and fault tolerance. The findings presented in 
this article are intended for system architects, developers, and DevOps engineers seeking to optimize microservices system 
performance by minimizing request processing latency. The results can be incorporated into existing DevOps practices and 
applied in large data centers.
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Abstract

Introduction
The development of cloud computing and microservices 
architecture has fundamentally transformed the approach to 
designing and operating high-load applications. Microservices, 
where each service is represented as a small, loosely coupled 
container, have simplified the scaling of system components, 
enabled rapid modifications, and ensured high availability. 
Cloud service providers such as Google Cloud, Amazon 
ECS, and IBM Cloud offer infrastructure that supports the 
continuous operation of numerous microservices [1, 4].

However, microservices architecture also presents significant 
challenges. First, frequent network interactions between 
microservices increase the risk of network congestion 
and delays in request processing. Second, monitoring and 
resource allocation become more complex due to dynamic 
container migration and scaling, as well as fluctuating Central 
Processing Unit (CPU) and memory demands over time [1, 
4]. These factors necessitate the development of specialized 
scheduling and load-balancing strategies to reduce latency 
while maintaining high service availability.

Several studies have focused on reducing network overhead 
to improve microservices distribution. For example, 
Alibaba’s experience, described in an online resource [1], 
demonstrates how system scalability and fault tolerance 
can be enhanced by decomposing monolithic applications 
into independent services, allowing efficient management 
of high workloads. Similarly, Balalaie A., Heydarnoori A., and 
Jamshidi P. [2] highlight the importance of integrating DevOps 
methodologies for successful cloud migration, ensuring 
flexibility and rapid adaptation to changing operational 
conditions. A comprehensive review of principles, patterns, 
and migration challenges presented by Velepucha V. and 
Flores P. [5] further systematizes knowledge in application 
decomposition, identifying key challenges in transitioning 
from monolithic to microservices-based systems.

Alelyani A., Datta A., and Hassan G. M. [3] propose a dynamic 
microservices distribution strategy aimed at improving 
fault tolerance and reducing network traffic, which in turn 
minimizes request processing delays. Meanwhile, Li X. et al. 
[7] introduce a topology-aware framework that considers 
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service distribution within cloud infrastructure to optimize 
inter-service communication. The practical implementation 
of these methods is confirmed by the use of tools such as 
Kubernetes Scheduler [6] for computational task scheduling 
and Cloud Trace [4] for latency monitoring, enabling detailed 
analysis and real-time system management.

The study by Alelyani A., Datta A., and Hassan G. M. [8] 
focuses on optimizing cloud computing performance through 
microservices scheduling strategies. The proposed approach 
is based on analyzing service characteristics and utilizing 
intelligent scheduling algorithms to respond to changing 
cloud workload conditions.

Despite these advancements, a research gap remains in the 
existing literature: modern studies either concentrate on 
macro-level architectural changes or rely on static resource 
allocation methods without sufficiently integrating dynamic 
monitoring systems with adaptive real-time scheduling 
algorithms. This limitation reduces the effectiveness of 
developed methods under rapidly changing load and 
network conditions, which are characteristic of modern 
cloud infrastructures.

The objective of this study is to develop and justify a new 
methodology for dynamic adaptive scheduling aimed at 
minimizing request processing latency in microservices 
architecture within cloud systems.

The scientific novelty lies in integrating topology-aware 
computational task distribution with real-time monitoring 
systems, ensuring optimal resource utilization and improving 
system fault tolerance.

The research hypothesis suggests that a combined approach, 
incorporating dynamic network state evaluation and adaptive 
task distribution, significantly reduces latency compared to 
traditional static scheduling methods.

To test this hypothesis and achieve the research objective, 
the following methodological approach is employed: 
data collection, mathematical modeling and algorithm 
development, integration with containerization platforms, 
and experimental validation.

Research results

Microservices architecture offers extensive scalability 
and update flexibility since each service is deployed in an 
independent container and can be maintained and updated 
separately. However, as interactions between microservices 
become more complex, the risk of increased network latency 
and excessive resource consumption grows. In recent years, 
several approaches have been proposed to mitigate these 
overhead costs, including:

Optimization of deployment topology. Approaches 1.	
that account for the microservices dependency graph 
(Call Graph) aim to place interdependent services on 
physically close nodes, reducing the number of inter-

node transitions and, consequently, network latency. For 
instance, within the MOTAS concept, the microservices 
graph is divided into hierarchical clusters to confine 
high-intensity traffic within specific node groups.

Utilization of orchestration tools (Kubernetes, Docker 2.	
Swarm) with extended plugins. Standard Kubernetes 
mechanisms, such as Deployment and Service, simplify 
the management of microservices’ lifecycle but do 
not always consider network proximity. To address 
this, scheduler extenders and custom controllers are 
proposed, which analyze physical machine load, the 
placement of “neighboring” microservices, network 
metrics, and potential Service Level Agreement (SLA) 
constraints [6].

Heuristic and intelligent scheduling algorithms (PSO, 3.	
genetic algorithms). Research indicates that particle 
swarm optimization methods, when enhanced, 
can accommodate both the distributed nature of 
microservices and real-time resource monitoring 
metrics. A crucial aspect is the correct selection of a 
fitness function, incorporating network metrics (latency, 
bandwidth) and fault tolerance criteria.

Thus, there is a trend toward comprehensive approaches 
combining network interaction analysis, dynamic resource 
monitoring, and load balancing, highlighting the need for 
continued research in this area [1, 4, 6].

A key feature of microservices architecture is its reliance 
on frequent service-to-service communication. Data 
exchange within cloud data centers can introduce significant 
overhead, particularly when tightly coupled microservices 
are distributed across different modules.

Network topology. Most modern data centers use a •	
Fat-tree (or Clos) architecture, theoretically providing 
high bandwidth through multiple paths between nodes. 
However, under practical loads, network switches at the 
aggregation or core levels become bottlenecks, limiting 
network bandwidth and increasing latency due to traffic 
congestion [1].

Microservices interaction speed. Remote Procedure •	
Call  (RPC) and RESTful call patterns require constant 
data exchange, causing the total number of transmitted 
packets to grow exponentially as the number of 
microservices increases [4].

Fault tolerance level. To improve reliability and •	
availability, microservices are often replicated, 
generating additional network traffic between replicas 
and source services [7].

To systematize the existing approaches in latency reduction, 
load balancing, and fault tolerance, Table 1 presents a 
comparative analysis of different strategies.



Page | 24Universal Library of Innovative Research and Studies

Methods for Minimizing Request Processing Latency in Microservices Architecture

Table 1. Comparison of approaches to reducing latency and improving resource allocation efficiency [4-7].

Approach Key Concept Advantages Limitations
Hierarchical partitioning 
mystery of time and  
space(MOTAS)

Dividing microservices 
into groups within a 
shared dependency graph

Reduces inter-group traffic, clear 
management structure

Does not account for dynamic 
load changes, requires static 
graph analysis

Scheduler extender in 
Kubernetes

Extending the standard 
scheduler with additional 
plugins

Flexible integration with 
Kubernetes, considers network 
metrics and resource utilization

Requires real-time monitoring 
setup, increases management 
complexity

Modified PSO (particle 
swarm optimization)

Heuristic search for 
optimal service placement 
across nodes

Fast convergence in large 
clusters, ability to consider 
multiple criteria simultaneously

May get stuck in local optima, 
requires parameter tuning 
(velocity, inertia weight, etc.)

Round-robin with 
resource awareness

Load distribution across 
servers in a cyclic manner 
with thresholds

Simple implementation, effective 
under minor load fluctuations

May not consider network 
latency factors and complex 
microservices dependencies

Replication with fault 
tolerance and SLA 
considerations

Duplicating critical 
microservices across 
multiple nodes

Eliminates single points of 
failure, enhances overall 
availability

Increases total traffic, 
complicates management, 
requires an advanced node 
selection strategy

As shown in Table 1, several approaches offer strong 
advantages, such as latency reduction (e.g., MOTAS in static 
graph analysis) and improved availability (replication). 
However, none of the listed methods independently solve 
the combined challenge of minimizing network latency, 
balancing resources, and ensuring high fault tolerance. This 
confirms the need for further research aimed at developing a 
comprehensive strategy that integrates heuristic algorithms 
(e.g., modified PSO), distributed scheduling mechanisms (e.g., 
round-robin with dynamic thresholds), and orchestration 
tools at the Kubernetes level.

Thus, the next section will introduce an original concept that 
combines microservices replication with load and network 
topology awareness. This approach aims to simultaneously 
reduce network latency and minimize single points of failure, 
which is particularly relevant for large-scale cloud systems.

Proposed Methods and Scheduling Strategy for 
Reducing Latency

The particle swarm optimization algorithm was originally 
proposed for solving continuous optimization problems. 
In its classical form, PSO models particles “swarming” in a 
multidimensional solution space, where each particle stores 
its current position and velocity while considering the 
best solutions found both individually and by the swarm. 
In microservices scheduling, this approach is applied to 
determine the “optimal” placement of services across 
physical machines (Particles → Microservices deployment 
options), thereby reducing latency and improving resource 
utilization [2, 3].

However, classical PSO does not account for:

The microservices dependency graph (Call Graph), 1.	
which determines which services interact frequently.

Fault tolerance constraints that require replication of 2.	
critical microservices across different nodes [7].

The risk of network congestion when a large number of 3.	
interdependent microservices are deployed at opposite 
ends of a data center [1].

Key PSO modifications in the proposed approach:

Dependency clustering. Before PSO execution, a subset of 1.	
microservices closely related to the target microservice 
(e.g., a subservice handling requests) is formed. This 
“localizes” the search space and reduces the probability 
of particles unnecessarily jumping to nodes that are 
inefficient in terms of network latency [3].

Fault tolerance awareness. During microservice 2.	
replication or migration, the algorithm verifies whether 
critical services are already present on a given physical 
machine (PM). This prevents the “single point of failure” 
scenario in the event of PM failure.

Additional component in the fitness function. The 3.	
classical fitness function considers “personal” and 
“global” optima. A network cost factor is introduced: 
the higher the number of inter-node “hops” (or 
the greater the total latency) in interactions with 
dependent microservices, the lower the fitness score. If 
a microservice can be placed closer to its dependencies 
without exceeding CPU/memory utilization thresholds, 
the solution’s overall fitness improves.

Velocity clamping. In classical PSO, particle velocity 4.	
can increase rapidly, causing particles to “overshoot” 
optimal solutions. A velocity cap is introduced to ensure 
slower movement, allowing the swarm to explore the 
vicinity of potential optimal solutions more thoroughly. 
This technique is often used in solving discrete or mixed 
scheduling problems.

To illustrate the key differences between classical PSO and 
the modified PSO in the context of microservices scheduling, 
Table 2 presents a comparative analysis.
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Table 2. Comparison of Classic PSO and Modified PSO for Microservices [3, 5, 6].

Criterion Classic PSO Modified PSO
Dependency graph 
awareness

Not considered. Particles search uniformly 
across the entire solution space

A subset of particles is directed toward nodes close 
to dependent microservices (Call Graph analysis), 
reducing network “hops”

Fault tolerance Not explicitly considered. Placement may be 
“random,” leading to a single point of failure

Critical service presence on a PM is verified; duplication 
of critical microservices on the same node is avoided

Fitness function Considers only “personal” and “global” optima 
(e.g., minimizing total resource costs)

Includes a network latency component and a load 
threshold factor to prevent SLA violations

Velocity control Particle velocity can increase without strong 
constraints

A velocity cap is introduced to allow more thorough 
exploration of solution areas

Scalability Good, but prone to local optima in complex 
spaces

Enhanced scalability and reduced risk of local optima 
by considering network and resource profiles of the 
cloud cluster

Thus, when properly implemented and configured (adjusting 
inertia weight, maximum velocity, load thresholds, 
etc.), the modified PSO demonstrates improved results 
by simultaneously considering network and resource 
constraints.

After determining an “acceptable” set of physical machines 
for microservices (the output of the modified PSO), it is 
necessary to evenly distribute replicas and new containers 
across servers [7]. For this purpose, the Round Robin 
(RR) algorithm is used, enhanced with the following 
modifications:

Dynamic CPU/memory utilization threshold. If a node 1.	
(PM) already exceeds a predefined threshold (e.g., 
70% CPU and 75% memory), RR “skips” this node and 
proceeds to the next one in the cycle without attempting 
to allocate another container there. Load data is collected 
from real-time monitoring systems.

Prioritization of nodes closer to dependent microservices. 2.	
From the set of candidates proposed by PSO, the nearest 
available node is selected (provided that its resource 
utilization threshold is not exceeded). If all “close” nodes 
are overloaded, the RR algorithm moves to the “next tier” 
of nodes, and so on.

Replication awareness. If it is necessary to deploy 3.	 n 
replicas of a microservice, the RR algorithm distributes 
them cyclically across eligible nodes to prevent excessive 
concentration of replicas on a single PM [1].

This combination of PSO and RR prevents situations where 
a service is “ideally” placed in terms of latency reduction 
but ultimately overloads a node, leading to the risk of SLA 
violations. Additionally, it supports more flexible load 
balancing, which is crucial for systems with a large number 
of microservices and unpredictable load spikes [4].

To ensure the practical applicability of the described 
methodology (PSO+RR), it must be integrated with an 
orchestration system. The most widely used platform is 
Kubernetes, which already provides:

Containerization (Pods, Deployments, Services);•	

Scaling (ReplicaSet, Horizontal Pod Autoscaler);•	

Scheduler extensions (Scheduler Extender, Plugins).•	

Below, Figure 1 illustrates the stages of integrating the PSO 
and RR combination.

Fig.1. The stages of integration of the combination of PSO 
and RR [6].

Experimental Validation and Results

This section describes the methodology for experimentally 
validating the proposed scheduling strategy, the datasets used 
for simulation, and key results along with their interpretation. 
To simulate real-world microservices deployment scenarios, 
two primary datasets were used:

Alibaba Trace. Published by Alibaba Inc. [1], this dataset 1.	
reflects the operation of a large-scale cluster utilizing a 
microservices architecture and includes the following 
types of data:

Identifiers of virtual machines (VMs) and containers, ○	
their timestamps, and resource usage parameters (CPU, 
memory);
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Call Graphs indicating dependencies between ○	
microservices;

Network traffic intensity between data center nodes ○	
(Fat-tree topology).

Google Trace. Provided by Google Cloud Docs [4] within 2.	
the Borg system. It covers distributed computing tasks 
and CPU/memory usage information. Unlike the Alibaba 
dataset, it does not include data on microservices 
dependencies; therefore, dependencies were 
artificially generated based on probabilistic interaction 
distributions. This dataset allows the evaluation of the 

strategy’s behavior under more dynamic loads and a 
high frequency of microservice restarts.

In all experiments, it was assumed that the Kubernetes 
orchestration system managed clusters consisting of several 
hundred physical machines (PMs) distributed in a Fat-tree 
topology. To validate the proposed scheduling strategy 
(PSO+RR), two types of scenarios were considered. For a 
comprehensive illustration, Table 3 presents a comparative 
analysis of three approaches: (1) classical Kubernetes, 
(2) PSO with an adaptive threshold (without considering 
network proximity), and (3) the PSO+RR strategy.

Table 3. Comparative analysis by three metrics. (compiled independently based on [1, 4, 6, 7, 8]).

Metric Classical Kubernetes Scheduler PSO with Adaptive 
Threshold

PSO+RR (Proposed 
Strategy)

Reduction in Network Traffic (relative to 
the initial state), %

10–12% 18–21% 33–36%

Average Latency Reduction, % 30–35% 55–60% 81–84%
Standard Deviation of CPU Utilization 25–30 (arbitrary units) 18–22 12–14

As seen in Table 3, the classical Kubernetes scheduler does 
not account for network proximity, leading to only moderate 
performance improvements. PSO with an adaptive threshold 
primarily focuses on resource management but does not 
sufficiently optimize network communication. The proposed 
strategy (PSO+RR) achieves the best reduction in network 
traffic and latency while also achieving more balanced CPU/
memory utilization.

The experiments demonstrate that the modified scheduling 
strategy, which considers the microservice dependency 
graph, resource thresholds, and load balancing, yields higher 
performance across all three metrics.

Ultimately, the results confirm the hypothesis that the 
combined use of modified PSO (which considers the network 
structure) and adaptive Round Robin (which accounts 
for resource thresholds) allows for a comprehensive 
minimization of latency, balanced load distribution, and 
enhanced fault tolerance in microservice environments.

Conclusion
The conducted research has demonstrated the effectiveness 
of a comprehensive microservice scheduling strategy that 
combines a modified particle swarm optimization (PSO) 
algorithm with an enhanced load distribution mechanism 
(Round Robin) while incorporating network topology 
proximity principles. This approach addresses several key 
challenges:

Reduction of network latency by placing closely 1.	
related microservices on physically adjacent nodes and 
minimizing inter-node transitions.

Load balancing based on dynamic resource utilization 2.	
thresholds (CPU, memory), preventing localized 
overloads.

Increased fault tolerance by preventing the co-location3.	  

of critical services on the same node and ensuring even 
replication distribution.

Experiments conducted on Alibaba and Google datasets 
showed that the proposed strategy outperforms the classical 
Kubernetes scheduler and other baseline heuristic methods. 
A significant reduction in overall network traffic was observed 
(up to 33–36% in static scenarios), with latency decreasing 
by more than 80% in some cases. At the same time, resource 
utilization levels increased, and the standard deviation of 
load distribution was nearly halved, indicating more efficient 
resource usage and reduced risk of SLA violations.

Thus, the proposed approach is highly relevant for large-scale 
cloud clusters where minimizing network latency, improving 
system availability, and optimizing hardware utilization are 
critical requirements. Future extensions of this methodology 
may include the integration of machine learning algorithms 
(such as Q-learning or other reinforcement learning 
techniques) for predictive microservice scheduling based 
on historical load data and evolving service dependency 
structures.
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