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The article considers the pharmaceutical industry’s transition to cost-optimized cloud infrastructure for scientific 
computing as a strategic transformation of research processes. The relevance of the work is driven by the exponential 
growth in data volumes in molecular dynamics, genomics, and proteomics, as well as the need for accelerated training of 
large artificial intelligence models, which makes traditional enterprise clusters economically and technically inefficient. 
The study was framed as an effort to seek the models of consumption of cloud resources and hardware profiles that would 
lower costs while maintaining or improving computing performance for pharmaceutical science. The novelty in the article 
is in its absolute scrutiny of hybrid consumption models (spot, reserved, and serverless instances) to be used in combination 
with accelerators specialized in GPUs, TPUs, FPGAs, and quantum processors on one side and a systematized view of 
FinOps practices tying research tasks together with transparent cost allocation on the other. The main conclusion about 
efficiency is based on two factors: first, a very exact match between the hardware stack and workload profile; second, tight 
organization within the resource consumption model. Pharmaceutical companies can increase the speed of research without 
growth in total expenditures by justified use of next-generation GPU series and energy-efficient Arm hosts, plus specialized 
accelerators, combined with a distributed data storage inclusive network-flow control. Organizationally, the key factor 
is the introduction of continuous cost-optimization practices (FinOps) and iterative infrastructure scaling through pilot 
projects and declarative manifests. The article will be helpful to researchers in pharmaceutical science, cloud-platform 
engineers, and R&D leaders responsible for digitization strategy and reducing the costs of computing processes.
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Abstract

Introduction
Computer simulation has now assumed a main role in 
pharmaceutical research: molecular-dynamics paths, “omics” 
checks, and teaching big models all need more and more high-
level computing. Thus, the high-performance computing 
(HPC) field for life sciences is seeing a compound yearly 
growth rate of 11.6% up to 2031 (Insightace Analytic Pvt 
Ltd, 2025). A like jump is noted in side metrics: the MDverse 
project has listed over 250,000 files from 2,000 scientific 
data sets placed by experts in open stores. It emphasizes 
that the rate of posting such simulations continues to grow 
(Tiemann et al., 2024).

However, the enterprise clusters on which the industry has 
traditionally relied have rigid structural constraints. Before 
the widespread adoption of virtualization, the average 
utilization of physical servers fluctuated at only 12–18%, 
meaning most racks consumed power while contributing 

little to computation (Energy Star, n.d.). Every new project 
meant weeks of buying equipment and millions spent on 
capital expenditures plus costly support for infrastructure;; 
it is not a coincidence, as VentureBeat analysts put it, that 
the shift to cloud reduces direct infrastructure costs by an 
average of 43% (Keefe, 2025).

Workloads are being shifted to an elastic cloud, and instance-
selection policies and purchasing modes are being retuned so 
that each mission gets exactly the resources it requires, not 
a cent more. Already about 83% of pharmaceutical firms use 
the cloud for some operations in hybrid mode while gradually 
refactoring their legacy pipelines, according to HIMSS (Keefe, 
2025). The strategic plan is an implementation strategy 
designed purposely to transform fixed capital expenditures 
into flexible operating ones while providing new molecules’ 
time-to-market acceleration and freeing up direct budget for 
scientific experimentation.
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Materials and Methodology

The study was based on an analysis of academic publications, 
industry reports, technical documentation from cloud 
providers, and practical case studies on deploying HPC 
in the pharmaceutical industry. The foundation included 
sources reflecting both the growth dynamics of the HPC 
market for life sciences (Insightace Analytic Pvt Ltd, 2025) 
and the practice of open scientific communities, where mass 
sharing of molecular-dynamics trajectories has confirmed 
a trend toward exponential data increase (Tiemann et al., 
2024). Additional materials were considered on the energy 
efficiency of traditional data centers (Energy Star, n.d.), as 
well as analytics on comparative costs when moving to the 
cloud (Keefe, 2025). This corpus made it possible to cover 
both academic and applied perspectives.

Methodologically, the work combined three research 
approaches. First, a comparative analysis was conducted of 
hardware profiles and cloud resource-consumption models, 
including cases of scalable GROMACS simulations and 
hybrid quantum-classical pipelines, which made it possible 
to assess not only computational efficiency but also pricing 
scenarios when choosing GPUs, TPUs, FPGAs, and specialized 
accelerators (Kutzner et al., 2022; Zhao et al., 2025). Second, 
a systematic review was performed of regulatory and 
market reports, including survey data on the extent of cloud 
adoption by pharmaceutical companies, thereby aligning the 
macroeconomic context with corporate strategies (Keefe, 
2025). Third, a content analysis was applied to practical 
cases from genomics and proteomics, which illuminated 
issues of scale and ways to solve them through cloud SaaS 
architectures and distributed storage (Illumina, n.d.; Li et al., 
2024).

Results and Discussion
The industry’s primary computational workloads fall into 
three complementary families. The first comprises molecular 
dynamics, virtual docking, and high-precision quantum-
chemical estimation of reaction energies. In a recent GROMACS 
benchmark in the cloud, it was possible to simultaneously 
employ more than 4,000 instances, 140,000 CPU cores, and 
3,000 GPUs, reducing a cycle of 19,872 simulations from 
weeks to two days without increasing total expenditures 
when spot-instance selection and checkpoint protocols were 
configured correctly (Kutzner et al., 2022). For more complex 
electronic correlations, hybrid quantum-classical pipelines 
already demonstrate triple-digit time savings: IonQ, together 
with AstraZeneca and AWS, accelerated modeling of a key 
step of the Suzuki–Miyaura reaction by more than twentyfold, 
moving the task from “months” to “days” and confirming that 
quantum accelerators are beginning to justify their class of 
resources specifically in drug-discovery scenarios (Zhao et 
al., 2025).

The second family is associated with processing genomic and 
proteomic data. A single NovaSeq 6000 installation outputs 
up to six terabases of data and twenty billion reads in less 
than forty-eight hours, instantly turning local storage into a 
bottleneck and forcing alignment and variant analysis into 
S3 or Google Cloud Storage objects for subsequent DRAGEN- 
or Spark-based processing (Illumina, n.d.). In proteomics, 
the increase in mass-spectrometric sensitivity produces a 
similar effect: the CloudProteoAnalyzer service distributed 
peptide identification across many nodes of a supercomputer 
and showed that a SaaS architecture in the cloud scales 
without loss of accuracy, leaving local stations primarily for 
rapid validation of results (Li et al., 2024). Its architecture is 
shown in Figure 1.

Fig. 1. CloudProteoAnalyzer architecture (Li et al., 2024)

The third direction is training and inference of artificial intelligence models for predicting molecular structures and properties. 
The classic AlphaFold pipeline (Figure 2) required more than eleven days of pretraining on 128 TPUs, i.e., approximately 
34,000 TPU-hours (Zhu et al., 2024). 
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Fig. 2. Structure of the AlphaFold model (Zhu et al., 2024)

The ScaleFold methodology optimized communications and 
kernels, stretching parallelism to 2,080 NVIDIA H100s and 
reducing the same stage to ten hours, which is equivalent to 
almost an eightfold acceleration and a direct saving of the 
budget for the cloud GPU pool (Zhu et al., 2024). In inference, 
the same models once quantized and deployed on Arm 
servers manage batch QSAR-screening requests with latency 
of less than one hundred milliseconds, hence intermediate 
metadata are moved to object storage and cached only for 
the time of the active virtual-screening cycle.

Altogether, these three workload types are the reason 
“compute-as-needed” hybrid scheduler architectures that 
can switch among GPUs, CPUs, spot pricing, and quantum 
accelerators are becoming the technical standard in the 
scientific divisions of pharmaceutical companies.

Cloud infrastructure is best determined by how well the 
hardware stack matches the workload profile. For heavy HPC 
compute and large-model training, it is recommended to use 
the newest GPU instances with H100 chips: From Amazon’s 
public documentation, the new P5 series shortens training 
time fourfold and at the same time reduces total expenditures 
for deep learning and HPC by about forty percent compared 
with the previous generation (Amazon Web Services, Inc., 
n.d.). Such accelerators scale well in clusters on the order 
of tens of thousands of GPUs and thus remain the baseline 
choice for pharmaceutical simulations and generative 
structure models.

A whole belt of service components operates around heavy 
compute: orchestration systems, ETL pipelines, and metadata 
stores. They rarely require high-performance cores, yet are 
cost-sensitive. Moving these tasks to Graviton Arm servers 
can save up to forty percent on a price-performance basis 
relative to comparable x86 nodes due to better energy 
consumption and the absence of hyper-threading overhead 
(Hykell, n.d.). The pivot is made with small code changes, 
so firms use Arm as a cost-effective layer for supporting 

microservices and off-peak reporting. For tight algorithms 
where matrix-work rate or ultra-low lag is key, the cloud has 
special boosters. Google’s new Trillium tensor chips show 
nearly a five times speed boost and a sixty-seven percent 
energy cut versus TPU v5e, making them suitable for big-
scale guessing of drug models on set budgets (Cherney, 
2024). In genomics, FPGAs—for instance, the FAST setup 
for adapter trimming—cut the time of matching steps by 
a tenfold without losing accuracy, thus moving the main 
variant-check phase out of the central path (Khaleghi et al., 
2022). Mixing such special chips with general-use GPUs and 
Arm hosts gives the best price-speed mix at every step in the 
science cycle.

Cost optimization in the cloud begins with choosing the 
resource-consumption model, because even the most 
modern hardware stack loses efficiency if paid at an inflated 
on-demand rate. For compute stages that can be safely 
interrupted after regular checkpoints, spot instances remain 
the best option: according to the AWS document “Compute 
on AWS: How to Choose,” unused capacity is sold at discounts 
of up to 90% off the regular price, with interruptions 
accompanied by two minutes of advance notice, which allows 
R&D teams to move large pools of molecular dynamics, 
docking, or preliminary molecule triage to spot without risk 
(Amazon Web Services, Inc., 2025). Current HPC research, 
such as the Uniform Progress algorithm, further shows that 
smart redistribution of tasks between spot and reserve yields 
27–84% savings while meeting agreed deadlines, which is 
critical for cycles tied to the end dates of clinical phases (Wu 
et al., 2024).

When a project is tied to a rigid schedule for publication of 
results or a registration dossier, disruptions are unacceptable, 
and capacity is reserved in advance. In effect, pharma apps 
run a hybrid portfolio: place the critical jars on reserved 
instances and run limbs at spot, achieving both reliability and 
price advantages. For ephemeral microservices like format 
conversion, integrity verification, or visualization scripts, 
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the best practice is to use the Function-as-a-Service model. 
MDPI study over sustainable IT deployment informs, moving 
to serverless cuts operational expenditures up to 60% as 
payment is only for function execution time and auto scaling 
on real traffic peak (Akour & Alenezi, 2025). Within scientific 
pipelines, this is especially noticeable in data-preparation 
stages of multi-omics analysis, where each event lasts mere 
seconds but triggers thousands of parallel processes. At the 
same time, the global artificial intelligence in drug discovery 
market size was estimated at USD 1.5 billion in 2023 and is 
projected to reach USD 20.30 billion by 2030, growing at a 
CAGR of 29.7% from 2024 to 2030 (GVR, n.d.).

Thus, a rational combination of spot, reserved, and serverless 
models turns the cloud from a simple source of capacity into 
a managed financial instrument: inexpensive spot covers 
massive parallel computation, reservations guarantee 
continuity of key branches, and functions handle small but 
numerous tasks, preserving budget for the most important 
goal—accelerating the time-to-market of drug molecules.

A good cloud setup comes from clearly splitting the compute 
part and the storage part, so that the amount of processor 
power can be changed without touching data banks. This 
split is very useful in drug-making work, where high compute 
needs happen in short runs while base and middle files are 
still needed for a long time. When storage is spread across 
object services, the cluster heart is not a single point of risk, 
and the storage budget is freed up for more important jobs.

A multicloud storage strategy permits keeping operational 
data closer to the compute core and, at the same time, 
automatically moving historical layers to a colder, more 
economical region. When tiering policies are keyed on 
frequency of access, active trajectories and models stay on 
hot disks within the same cloud that the containers run 
in; infrequently requested replicas and checkpoints can be 
placed in more cost-effective storage on another platform. 
This reduces the total cost of ownership without extra 
administration and simultaneously creates a backup with an 
independent provider.

Network costs become a new optimization center, because 
moving peta- and exabyte-scale datasets between sites 
can quickly negate the benefits of inexpensive storage. The 
solution is to localize computing where the most extensive 
data reside, use on-the-fly compression and aggregated 
transfer windows, and carefully control traffic directions. 
Correct routing decreases intercloud egress plus increases 
real throughput at the same provisioned bandwidth cap, 
making data get quicker for the next stage of research. 
Rational apportionment of cloud expenses requires as much 
scientific rigor as experiments in computing itself. Once data 
and processes have been distributed over several sites, all 
billing events will be coming into a unified log stream that 
gives each virtual machine, container, or function a tag with 
the project identifier and the pipeline stage. End-to-end 
attribution shows precisely how much comparative modeling 
or activity checking of molecules costs, turning financial 

indicators into another metadata layer that researchers can 
analyze alongside simulation results.

When transparency is achieved, chargeback and showback 
models come into play. The first debits are costs directly to 
laboratories or programs, forcing teams to account for budget 
in planning replica counts and restart frequency. The second 
keeps payment on a central account but regularly publishes 
details, fostering healthy competition among divisions for 
resource-use efficiency. In both cases, cost visibility leads to 
voluntary abandonment of irrational pools and encourages 
migration to cheaper instance classes in stages where 
performance is not the limiting factor.

The FinOps loop is closed by continuous optimization based 
on hardware-generation refresh. As soon as a new processor 
or accelerator family appears in the cloud, an automated 
testbed runs standard tasks, comparing execution time and 
hourly price. If the total cost is lower at comparable accuracy, 
the infrastructure code migrates to the newer architecture, 
and the old family is gradually removed from deployment 
templates. This cycle of constant configuration review 
guarantees that the economic effect does not erode over 
time and that the budget maximizes the scientific value of 
computations.

Implementation of an optimized cloud platform begins with 
a detailed survey of existing workflows and the actual profile 
of computational needs. All stages, from the generation of 
source data to the publication of results, are mapped by 
engineers and research representatives in joint efforts. 
This includes recording the time spent on each task, its 
type, average duration, memory requirements, and storage 
specifics. A heat map of expenditures is based on these 
observations. Infrastructure bottlenecks and excess reserves 
are immediately visible. Besides, it provides insight into 
which part of the pipeline will yield the savings if moved to 
the cloud.

A minimally viable pilot is then constituted. One 
representative project is selected, and it provides at least one 
example of each key workload: simulation tasks, processing 
large biological datasets, and machine-learning models. The 
pilot gets started on a small number of compute instances 
running under predefined metrics of execution time, 
resource cost per unit of scientific output, and reproducibility 
stability. If the indicators improve relative to the baseline, 
the results are recorded in a report that separately outlines 
recommendations for applying the same principles to 
adjacent processes.

After validating the pilot phase, stepwise scaling begins. 
The new infrastructure template has been added to version 
control, and deployment processes have been moved from 
manual mode to declarative manifests, allowing each 
laboratory to set up an independent environment as needed. 
Meanwhile, a series of practical workshops is available for 
users to learn how to initiate tasks through the orchestrator, 
tag usage for expenditure tracking, and review FinOps 
reports. The architecture is illustrated in Figure 3.
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Fig. 3. Cloud Optimization Cycle

An ongoing improvement loop captures participant feedback 
to help steady the retuning of the architecture as volumes of 
data accumulate and new experiment types emerge, while 
remaining cost-transparent and highly flexible to meet 
scientific needs.

Conclusion
The article demonstrates that the transition of pharmaceutical 
science to optimized cloud infrastructure is less a matter 
of infrastructure savings than a systemic transformation 
of the computing cycle, aimed at accelerating scientific 
iterations and converting capital expenditures into operating 
expenditures. The examples cover three complementary 
classes of workloads—molecular dynamics and quantum-
chemical calculations, processing of “omics” data, and 
training of large models—and demonstrate that, with a well-
chosen hardware stack and resource-consumption model, 
the cloud can substantially reduce computation time without 
increasing total expenditures. Savings and acceleration 
illustrations comprise scalable GROMACS benchmarks, 
hybrid quantum-classical pipeline examples, and optimized 
training for models like AlphaFold, which underscore the 
pragmatic advantages of merging specialized accelerators, 
scaling, and checkpoint approaches.

The scientific computing performance depends, technically 
speaking, not on the strength of individual cores but on how 
well and to what acceptable degree the entire hardware 
stack fits the workload profile. Therefore, Modern GPU series 
are justified for heavy HPC tasks and training large models. 
Workloads for such ancillary services and ETL should be 
better moved closer to energy-efficient Arm hosts. Different 
stages require looking toward tensor accelerators, FPGAs, 
and other special chips. The separation of the compute and 
storage layers, together with a multicloud tiering policy, 
would own the data while reducing single point of failure 
risk; Compute localization, plus controlling network flows, 
keeps big dataset moves under control.

Economic and organizational synthesis reads thus: 
systematic consumption of resources is what truly brings 
about cost optimization within the cloud. This involves 
spot, reserved, and serverless models acting as a managed 
financial instrument- where cheap spot instances cover 
extensive parallel computation, reservations provide 
insurance for the critical branch to be running, and functions 
for many short-lived tasks. Continuous FinOps practice 
with resource tagging, end-to-end cost attribution, together 
with chargeback or showback models, brings transparency 
whereby expenditure becomes a measurable parameter of 
research efficiency that optimizes it by the laboratories.

Begin with a detailed workflow survey, build a consumption 
heat map, pilot minimally viable validate metrics of time and 
cost per unit of scientific output, and reproducibility, then 
scale stepwise move deployments to declarative manifests, 
and organize training for researchers. It is an iteration that 
will sustain the economic effect over time as new generations 
of hardware are tested in automated testbeds, reducing 
template obsolescence risk.

The right hardware profile, joined with flexible consumption 
models and strong cost-accounting practices, lets pharma 
firms boost the efficiency of scientific computing. This 
makes room for a genuine chance to shift freed funds to lab 
work and speed up bringing new molecules to market while 
keeping the same level of reliability and reproducibility in 
research pipelines.
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