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The article considers the pharmaceutical industry’s transition to cost-optimized cloud infrastructure for scientific
computing as a strategic transformation of research processes. The relevance of the work is driven by the exponential
growth in data volumes in molecular dynamics, genomics, and proteomics, as well as the need for accelerated training of
large artificial intelligence models, which makes traditional enterprise clusters economically and technically inefficient.
The study was framed as an effort to seek the models of consumption of cloud resources and hardware profiles that would
lower costs while maintaining or improving computing performance for pharmaceutical science. The novelty in the article
is in its absolute scrutiny of hybrid consumption models (spot, reserved, and serverless instances) to be used in combination
with accelerators specialized in GPUs, TPUs, FPGAs, and quantum processors on one side and a systematized view of
FinOps practices tying research tasks together with transparent cost allocation on the other. The main conclusion about
efficiency is based on two factors: first, a very exact match between the hardware stack and workload profile; second, tight
organization within the resource consumption model. Pharmaceutical companies can increase the speed of research without
growth in total expenditures by justified use of next-generation GPU series and energy-efficient Arm hosts, plus specialized
accelerators, combined with a distributed data storage inclusive network-flow control. Organizationally, the key factor
is the introduction of continuous cost-optimization practices (FinOps) and iterative infrastructure scaling through pilot
projects and declarative manifests. The article will be helpful to researchers in pharmaceutical science, cloud-platform
engineers, and R&D leaders responsible for digitization strategy and reducing the costs of computing processes.
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INTRODUCTION little to computation (Energy Star, n.d.). Every new project
meant weeks of buying equipment and millions spent on
capital expenditures plus costly support for infrastructure;;
it is not a coincidence, as VentureBeat analysts put it, that
the shift to cloud reduces direct infrastructure costs by an

average of 43% (Keefe, 2025).

Computer simulation has now assumed a main role in
pharmaceutical research: molecular-dynamics paths, “omics”
checks, and teaching big models all need more and more high-
level computing. Thus, the high-performance computing
(HPC) field for life sciences is seeing a compound yearly

growth rate of 11.6% up to 2031 (Insightace Analytic Pvt
Ltd, 2025). A like jump is noted in side metrics: the MDverse
project has listed over 250,000 files from 2,000 scientific
data sets placed by experts in open stores. It emphasizes
that the rate of posting such simulations continues to grow
(Tiemann et al., 2024).

However, the enterprise clusters on which the industry has
traditionally relied have rigid structural constraints. Before
the widespread adoption of virtualization, the average
utilization of physical servers fluctuated at only 12-18%,
meaning most racks consumed power while contributing

Workloads are being shifted to an elastic cloud, and instance-
selection policies and purchasing modes are being retuned so
that each mission gets exactly the resources it requires, not
a cent more. Already about 83% of pharmaceutical firms use
the cloud for some operations in hybrid mode while gradually
refactoring their legacy pipelines, according to HIMSS (Keefe,
2025). The strategic plan is an implementation strategy
designed purposely to transform fixed capital expenditures
into flexible operating ones while providing new molecules’
time-to-market acceleration and freeing up direct budget for
scientific experimentation.
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MATERIALS AND METHODOLOGY

The study was based on an analysis of academic publications,
industry reports, technical documentation from cloud
providers, and practical case studies on deploying HPC
in the pharmaceutical industry. The foundation included
sources reflecting both the growth dynamics of the HPC
market for life sciences (Insightace Analytic Pvt Ltd, 2025)
and the practice of open scientific communities, where mass
sharing of molecular-dynamics trajectories has confirmed
a trend toward exponential data increase (Tiemann et al,
2024). Additional materials were considered on the energy
efficiency of traditional data centers (Energy Star, n.d.), as
well as analytics on comparative costs when moving to the
cloud (Keefe, 2025). This corpus made it possible to cover
both academic and applied perspectives.

Methodologically, the work combined three research
approaches. First, a comparative analysis was conducted of
hardware profiles and cloud resource-consumption models,
including cases of scalable GROMACS simulations and
hybrid quantum-classical pipelines, which made it possible
to assess not only computational efficiency but also pricing
scenarios when choosing GPUs, TPUs, FPGAs, and specialized
accelerators (Kutzner et al., 2022; Zhao et al., 2025). Second,
a systematic review was performed of regulatory and
market reports, including survey data on the extent of cloud
adoption by pharmaceutical companies, thereby aligning the
macroeconomic context with corporate strategies (Keefe,
2025). Third, a content analysis was applied to practical
cases from genomics and proteomics, which illuminated
issues of scale and ways to solve them through cloud SaaS
architectures and distributed storage (Illumina, n.d.; Li et al,,

RESULTS AND DISCUSSION

The industry’s primary computational workloads fall into
three complementary families. The first comprises molecular
dynamics, virtual docking, and high-precision quantum-
chemical estimation of reaction energies. In a recent GROMACS
benchmark in the cloud, it was possible to simultaneously
employ more than 4,000 instances, 140,000 CPU cores, and
3,000 GPUs, reducing a cycle of 19,872 simulations from
weeks to two days without increasing total expenditures
when spot-instance selection and checkpoint protocols were
configured correctly (Kutzner et al., 2022). For more complex
electronic correlations, hybrid quantum-classical pipelines
already demonstrate triple-digit time savings: lonQ, together
with AstraZeneca and AWS, accelerated modeling of a key
step of the Suzuki-Miyaura reaction by more than twentyfold,
moving the task from “months” to “days” and confirming that
quantum accelerators are beginning to justify their class of
resources specifically in drug-discovery scenarios (Zhao et
al,, 2025).

The second family is associated with processing genomic and
proteomic data. A single NovaSeq 6000 installation outputs
up to six terabases of data and twenty billion reads in less
than forty-eight hours, instantly turning local storage into a
bottleneck and forcing alignment and variant analysis into
S3 or Google Cloud Storage objects for subsequent DRAGEN-
or Spark-based processing (Illumina, n.d.). In proteomics,
the increase in mass-spectrometric sensitivity produces a
similar effect: the CloudProteoAnalyzer service distributed
peptide identification across many nodes of a supercomputer
and showed that a SaaS architecture in the cloud scales
without loss of accuracy, leaving local stations primarily for
rapid validation of results (Li et al., 2024). Its architecture is

2024). shown in Figure 1.
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Fig. 1. CloudProteoAnalyzer architecture (Li et al., 2024)

The third direction is training and inference of artificial intelligence models for predicting molecular structures and properties.
The classic AlphaFold pipeline (Figure 2) required more than eleven days of pretraining on 128 TPUs, i.e., approximately

34,000 TPU-hours (Zhu et al., 2024).
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Fig. 2. Structure of the AlphaFold model (Zhu et al., 2024)

The ScaleFold methodology optimized communications and
kernels, stretching parallelism to 2,080 NVIDIA H100s and
reducing the same stage to ten hours, which is equivalent to
almost an eightfold acceleration and a direct saving of the
budget for the cloud GPU pool (Zhu et al., 2024). In inference,
the same models once quantized and deployed on Arm
servers manage batch QSAR-screening requests with latency
of less than one hundred milliseconds, hence intermediate
metadata are moved to object storage and cached only for
the time of the active virtual-screening cycle.

Altogether, these three workload types are the reason
“compute-as-needed” hybrid scheduler architectures that
can switch among GPUs, CPUs, spot pricing, and quantum
accelerators are becoming the technical standard in the
scientific divisions of pharmaceutical companies.

Cloud infrastructure is best determined by how well the
hardware stack matches the workload profile. For heavy HPC
compute and large-model training, it is recommended to use
the newest GPU instances with H100 chips: From Amazon’s
public documentation, the new P5 series shortens training
time fourfold and at the same time reduces total expenditures
for deep learning and HPC by about forty percent compared
with the previous generation (Amazon Web Services, Inc.,
n.d.). Such accelerators scale well in clusters on the order
of tens of thousands of GPUs and thus remain the baseline
choice for pharmaceutical simulations and generative
structure models.

A whole belt of service components operates around heavy
compute: orchestration systems, ETL pipelines, and metadata
stores. They rarely require high-performance cores, yet are
cost-sensitive. Moving these tasks to Graviton Arm servers
can save up to forty percent on a price-performance basis
relative to comparable x86 nodes due to better energy
consumption and the absence of hyper-threading overhead
(Hykell, n.d.). The pivot is made with small code changes,
so firms use Arm as a cost-effective layer for supporting

microservices and off-peak reporting. For tight algorithms
where matrix-work rate or ultra-low lag is key, the cloud has
special boosters. Google’s new Trillium tensor chips show
nearly a five times speed boost and a sixty-seven percent
energy cut versus TPU v5e, making them suitable for big-
scale guessing of drug models on set budgets (Cherney,
2024). In genomics, FPGAs—for instance, the FAST setup
for adapter trimming—cut the time of matching steps by
a tenfold without losing accuracy, thus moving the main
variant-check phase out of the central path (Khaleghi et al.,
2022). Mixing such special chips with general-use GPUs and
Arm hosts gives the best price-speed mix at every step in the
science cycle.

Cost optimization in the cloud begins with choosing the
resource-consumption model, because even the most
modern hardware stack loses efficiency if paid at an inflated
on-demand rate. For compute stages that can be safely
interrupted after regular checkpoints, spot instances remain
the best option: according to the AWS document “Compute
on AWS: How to Choose,” unused capacity is sold at discounts
of up to 90% off the regular price, with interruptions
accompanied by two minutes of advance notice, which allows
R&D teams to move large pools of molecular dynamics,
docking, or preliminary molecule triage to spot without risk
(Amazon Web Services, Inc., 2025). Current HPC research,
such as the Uniform Progress algorithm, further shows that
smart redistribution of tasks between spot and reserve yields
27-84% savings while meeting agreed deadlines, which is
critical for cycles tied to the end dates of clinical phases (Wu
etal, 2024).

When a project is tied to a rigid schedule for publication of
results or a registration dossier, disruptions are unacceptable,
and capacity is reserved in advance. In effect, pharma apps
run a hybrid portfolio: place the critical jars on reserved
instances and run limbs at spot, achieving both reliability and
price advantages. For ephemeral microservices like format
conversion, integrity verification, or visualization scripts,
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the best practice is to use the Function-as-a-Service model.
MDPI study over sustainable IT deployment informs, moving
to serverless cuts operational expenditures up to 60% as
payment is only for function execution time and auto scaling
on real traffic peak (Akour & Alenezi, 2025). Within scientific
pipelines, this is especially noticeable in data-preparation
stages of multi-omics analysis, where each event lasts mere
seconds but triggers thousands of parallel processes. At the
same time, the global artificial intelligence in drug discovery
market size was estimated at USD 1.5 billion in 2023 and is
projected to reach USD 20.30 billion by 2030, growing at a
CAGR of 29.7% from 2024 to 2030 (GVR, n.d.).

Thus, a rational combination of spot, reserved, and serverless
models turns the cloud from a simple source of capacity into
a managed financial instrument: inexpensive spot covers
massive parallel computation, reservations guarantee
continuity of key branches, and functions handle small but
numerous tasks, preserving budget for the most important
goal—accelerating the time-to-market of drug molecules.

A good cloud setup comes from clearly splitting the compute
part and the storage part, so that the amount of processor
power can be changed without touching data banks. This
splitis very useful in drug-making work, where high compute
needs happen in short runs while base and middle files are
still needed for a long time. When storage is spread across
object services, the cluster heart is not a single point of risk,
and the storage budget is freed up for more important jobs.

A multicloud storage strategy permits keeping operational
data closer to the compute core and, at the same time,
automatically moving historical layers to a colder, more
economical region. When tiering policies are keyed on
frequency of access, active trajectories and models stay on
hot disks within the same cloud that the containers run
in; infrequently requested replicas and checkpoints can be
placed in more cost-effective storage on another platform.
This reduces the total cost of ownership without extra
administration and simultaneously creates a backup with an
independent provider.

Network costs become a new optimization center, because
moving peta- and exabyte-scale datasets between sites
can quickly negate the benefits of inexpensive storage. The
solution is to localize computing where the most extensive
data reside, use on-the-fly compression and aggregated
transfer windows, and carefully control traffic directions.
Correct routing decreases intercloud egress plus increases
real throughput at the same provisioned bandwidth cap,
making data get quicker for the next stage of research.
Rational apportionment of cloud expenses requires as much
scientific rigor as experiments in computing itself. Once data
and processes have been distributed over several sites, all
billing events will be coming into a unified log stream that
gives each virtual machine, container, or function a tag with
the project identifier and the pipeline stage. End-to-end
attribution shows precisely how much comparative modeling
or activity checking of molecules costs, turning financial

indicators into another metadata layer that researchers can
analyze alongside simulation results.

When transparency is achieved, chargeback and showback
models come into play. The first debits are costs directly to
laboratories or programs, forcing teams to account for budget
in planning replica counts and restart frequency. The second
keeps payment on a central account but regularly publishes
details, fostering healthy competition among divisions for
resource-use efficiency. In both cases, cost visibility leads to
voluntary abandonment of irrational pools and encourages
migration to cheaper instance classes in stages where
performance is not the limiting factor.

The FinOps loop is closed by continuous optimization based
on hardware-generation refresh. As soon as a new processor
or accelerator family appears in the cloud, an automated
testbed runs standard tasks, comparing execution time and
hourly price. If the total cost is lower at comparable accuracy,
the infrastructure code migrates to the newer architecture,
and the old family is gradually removed from deployment
templates. This cycle of constant configuration review
guarantees that the economic effect does not erode over
time and that the budget maximizes the scientific value of
computations.

Implementation of an optimized cloud platform begins with
a detailed survey of existing workflows and the actual profile
of computational needs. All stages, from the generation of
source data to the publication of results, are mapped by
engineers and research representatives in joint efforts.
This includes recording the time spent on each task, its
type, average duration, memory requirements, and storage
specifics. A heat map of expenditures is based on these
observations. Infrastructure bottlenecks and excess reserves
are immediately visible. Besides, it provides insight into
which part of the pipeline will yield the savings if moved to
the cloud.

A minimally viable pilot is then constituted. One
representative project is selected, and it provides at least one
example of each key workload: simulation tasks, processing
large biological datasets, and machine-learning models. The
pilot gets started on a small number of compute instances
running under predefined metrics of execution time,
resource cost per unit of scientific output, and reproducibility
stability. If the indicators improve relative to the baseline,
the results are recorded in a report that separately outlines
recommendations for applying the same principles to
adjacent processes.

After validating the pilot phase, stepwise scaling begins.
The new infrastructure template has been added to version
control, and deployment processes have been moved from
manual mode to declarative manifests, allowing each
laboratory to set up an independent environment as needed.
Meanwhile, a series of practical workshops is available for
users to learn how to initiate tasks through the orchestrator,
tag usage for expenditure tracking, and review FinOps
reports. The architecture is illustrated in Figure 3.
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An ongoing improvement loop captures participant feedback
to help steady the retuning of the architecture as volumes of
data accumulate and new experiment types emerge, while
remaining cost-transparent and highly flexible to meet
scientific needs.

CONCLUSION

The article demonstrates that the transition of pharmaceutical
science to optimized cloud infrastructure is less a matter
of infrastructure savings than a systemic transformation
of the computing cycle, aimed at accelerating scientific
iterations and converting capital expenditures into operating
expenditures. The examples cover three complementary
classes of workloads—molecular dynamics and quantum-
chemical calculations, processing of “omics” data, and
training of large models—and demonstrate that, with a well-
chosen hardware stack and resource-consumption model,
the cloud can substantially reduce computation time without
increasing total expenditures. Savings and acceleration
illustrations comprise scalable GROMACS benchmarks,
hybrid quantum-classical pipeline examples, and optimized
training for models like AlphaFold, which underscore the
pragmatic advantages of merging specialized accelerators,
scaling, and checkpoint approaches.

The scientific computing performance depends, technically
speaking, not on the strength of individual cores but on how
well and to what acceptable degree the entire hardware
stack fits the workload profile. Therefore, Modern GPU series
are justified for heavy HPC tasks and training large models.
Workloads for such ancillary services and ETL should be
better moved closer to energy-efficient Arm hosts. Different
stages require looking toward tensor accelerators, FPGAs,
and other special chips. The separation of the compute and
storage layers, together with a multicloud tiering policy,
would own the data while reducing single point of failure
risk; Compute localization, plus controlling network flows,
keeps big dataset moves under control.

Economic and organizational synthesis reads thus:
systematic consumption of resources is what truly brings
about cost optimization within the cloud. This involves
spot, reserved, and serverless models acting as a managed
financial instrument- where cheap spot instances cover
extensive parallel computation, reservations provide
insurance for the critical branch to be running, and functions
for many short-lived tasks. Continuous FinOps practice
with resource tagging, end-to-end cost attribution, together
with chargeback or showback models, brings transparency
whereby expenditure becomes a measurable parameter of
research efficiency that optimizes it by the laboratories.

Begin with a detailed workflow survey, build a consumption
heat map, pilot minimally viable validate metrics of time and
cost per unit of scientific output, and reproducibility, then
scale stepwise move deployments to declarative manifests,
and organize training for researchers. It is an iteration that
will sustain the economic effect over time as new generations
of hardware are tested in automated testbeds, reducing
template obsolescence risk.

The right hardware profile, joined with flexible consumption
models and strong cost-accounting practices, lets pharma
firms boost the efficiency of scientific computing. This
makes room for a genuine chance to shift freed funds to lab
work and speed up bringing new molecules to market while
keeping the same level of reliability and reproducibility in
research pipelines.
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