Research Article

Universal Library of Innovative Research and Studies

ISSN: 3065-0003 | Volume 3, Issue 1
Open Access | PP: 13-20
DOI: https://doi.org/10.70315/uloap.ulirs.2026.0301003

Universal Library Open Access Publications LLC

State Management in Distributed Systems Using the Example of
Multi-Version Concurrency Control (MVCC)

Brandon Vrooman

Software Engineer, Innobit Inc, Toronto, Canada.

This article analyzes state management in distributed systems based on Multi-Version Concurrency Control (MVCC). The
relevance of this work is driven by the growth of high-load blockchain platforms and agentic Al systems, for which scalability
and deterministic state consistency are critical requirements. The novelty of the research lies in the comprehensive
examination of MVCC not as a local mechanism for transaction isolation, but as a central state management layer
integrated with architectures for replication, consensus, inter-shard interaction, and disaggregated memory. The paper
describes modern approaches to version garbage collection, lock-free data structures, hybrid blockchain-DBMS systems,
cloned control protocols, and cross-shard transactions; their limitations and areas of applicability are studied. Particular
attention is paid to identifying architectural patterns and recommendations for high-performance L2 blockchains and
agentic Al platforms. To achieve the set objective, methods of comparative and systemic analysis of scientific publications
are employed. The conclusion describes findings regarding the role of MVCC as a state management core and formulates
directions for further research. The article will be useful to engineers and researchers involved in the design of large-scale
distributed, blockchain, and Al systems.

Keywords: Distributed Systems, Multi-Version Concurrency Control, Blockchain, Cloned Concurrency Control, Hybrid
Blockchain-DBMS, Agentic Al Platforms, Disaggregated Memory, State Management.

INTRODUCTION To compare theoretically oriented and engineering MVCC

schemes, covering version garbage collection, lock-free data
structures, memory-optimized solutions, and architectures
with disaggregated memory.

Modern distributed systems—ranging from blockchain
platforms and financial infrastructures to agentic Al
networks—face the necessity of simultaneously ensuring
high throughput, strict consistency, and deterministic
reproduction of computations. The growth in load, the
increasing complexity of protocols, and the emergence of
architectures with disaggregated memory intensify the
requirements for state management layers: they must
support massive parallelism, fault tolerance, and behavior
auditability without an exponential increase in overhead
costs. Against this background, Multi-Version Concurrency
Control (MVCC) is outgrowing its role as a local transaction
isolation mechanism and is becoming a key tool for organizing
consistent snapshots and controlled state evolution in a
distributed environment.

To analyze the interaction of MVCC with protocols for
consensus, replication, and inter-shard exchange in
blockchain systems and transactional clusters.

To identify robust architectural patterns of state management
for L2 blockchains, permissioned consortiums, and agentic Al
platforms, and to formulate recommendations for designing
the state layer.

The novelty of the work lies in considering MVCC through the
prism of the entire distributed system architecture, rather
than a separate DBMS or node: multi-versioning is interpreted
as a common language for state reconciliation between

The objective is to systematize modern approaches to multi- replicas, shards, chains, and agents. Unlike existing studies

version concurrency control in distributed systems and
demonstrate how MVCC functions as a state management
layer in high-performance blockchain platforms and agentic
Al networks. The tasks are:

focused either on local concurrency control algorithms or
on specific aspects of blockchain storage, this article offers a
holistic picture linking multi-version GC, formally verifiable

transactional cores, hybrid blockchain-DBMS systems,

Citation: Brandon Vrooman, “State Management in Distributed Systems Using the Example of Multi-Version Concurrency
Control (MVCC)”, Universal Library of Innovative Research and Studies, 2026; 3(1): 13-20. DOI: https://doi.org/10.70315/

uloap.ulirs.2026.0301003.

www.ulopenaccess.com

Page | 13

State Management in Distributed Systems Using the Example of Multi-Version Concurrency

Control (MVCC)

cloned control protocols, and MVCC-oriented cross-sharding
schemes into a single state management model.

MATERIALS AND METHODS

Modern scientific works reflecting various aspects of MVCC
application in distributed systems, databases, and blockchain
architectures were used as research materials. N. Ben-David,
G. E. Blelloch, P. Fatourou, et al. proposed schemes for multi-
version garbage collection with simultaneous time and space
bounds and integration with wait-free data structures [1].
Y.-S. Chang, R. Jung, U. Sharma, J. Tassarotti, M. F. Kaashoek,
and N. Zeldovich developed and formally verified the vMVCC
transactional library, demonstrating the possibility of
strictly proving the correctness of a high-performance MVCC
core [2]. M. Freitag, A. Kemper, and T. Neumann investigated
memory-optimized MVCC for disk-based DBMSs, showing
how separating “hot” and “cold” versions between memory
and disk affects latency and storage costs [3]. Z. Ge, D. Loghin,
B. C. Ooi, P. Ruan, and T. Wang analyzed hybrid blockchain-
DBMS systems where the transactional model and MVCC are
implemented in the database, while the blockchain serves as
an immutable log and consensus layer [4].]. Helt, A. Sharma,
D. J. Abadi, W. Lloyd, and]J. M. Faleiro proposed the C5
protocol for cloned concurrency control in primary-backup
configurations, ensuring limited replica lag while maintaining
parallelism [5].]. Kalajdjieski, M. Raikwar, N. Arsov, G. Velinov,
and D. Gligoroski presented a review of databases suitable
for use in a blockchain context, systematizing data and
transaction models, including multi-version approaches [6].
W. Lin, Q. Qu, L. Ning, J. Fan, and Q. Jiang proposed an MVCC
approach to parallelizing the interoperability of consortium
blockchains, in which cross-chain transactions are described
through object version reconciliation [7]. G. Sheffi, P.
Ramalhete, and E. Petrank developed EEMARQ—a lock-free
structure supporting efficient range queries and memory
management in a multi-version environment [8]. L. Yang, X.
Dong, Z. Wan, D. Ly, Y. Zhang, and Y. Shen, in their work on
HiCoCS, showed how MVCC conflicts in Hyperledger Fabric
limit the throughput of cross-sharding transactions and
proposed schemes for logical separation of state hot spots
[9]. Finally, M. Zhang, Y. Hua, and Z. Yang described Motor,
a system implementing multi-versioning for distributed
transactions in architectures with disaggregated memory,
which allowed for evaluating the impact of network latency
on version metadata costs [10].

Comparative analysis and synthesis of scientific sources,
methods of systemic and structural-functional analysis
of distributed system architectures, as well as elements
of conceptual and architectural modelling, were
applied to write the article. These methods allowed for
formulating generalizing state management patterns and
recommendations for their practical application.

RESULTS

The results of the analytical research show that multi-

version concurrency control (MVCC) in modern distributed
systems is evolving towards an increasingly tight connection
with storage, replication, and consensus architectures. A
comparison of recent works on MVCC, hybrid blockchain-
DBMSs, and high-performance cross-shard transaction
mechanisms allows for the formulation of a holistic state
management model suitable for high-load blockchain
platforms and distributed Al systems processing millions of
requests per day [1-10].

Common to the examined solutions is a shift in focus
from the local “server-database” level to the global
“cluster-blockchain-agent platform” level. MVCC ceases
to be exclusively a transaction isolation mechanism and
transforms into a universal state management layer,
upon which consensus protocols, sharding, cross-shard
transactions, and agent interactions are implemented. In
this layer, the following become key: 1) version storage cost,
2) determinism and behavioral auditability, 3) reconciliation
of version snapshots between replicas and shards, 4) the
impact of version sampling on throughput and latency.

A basic limiting factor is the accumulation of old versions.
The garbage collection method for multi-version structures
proposed by Ben-David et al. demonstrates that it is possible
to achieve simultaneous time and space bounds: the average
time to reclaim one version remains O(1), and the number
of supported “extra” versions does not exceed a constant
factor of the minimum necessary [1]. The technique relies on
two components—a wait-free structure for tracking ranges
of obsolete versions and a new lock-free doubly linked list
structure that allows for efficient removal of arbitrary nodes
from version lists. Analytically, this sets a lower bound for
MVCC overhead at the memory level and provides a basis for
high-load systems where numerous long-lived reads (e.g.,
analytics over live blockchain state or global state scans by
Al agents) should not lead to an explosive growth in the
number of versions.

The verifiability of the MVCC mechanism becomes critical as
protocols grow in complexity. The work of Chang et al. on
vMVCC shows that a high-performance transactional library
with MVCC can be formally verified, including correctness of
visibility, absence of serializability anomalies, and invariants
regarding the locking protocol and log structure [2]. For
distributed systems, this means that the state management
layer can actas a formally proven core upon which replication
and consensus protocols are layered. This approach is
particularly important for financial and infrastructural
blockchain systems, where an error in MVCC implementation
ata bottleneck of the execution layer can lead to irretrievable
loss of funds or non-deterministic forks.

An important direction in MVCC evolution has been the
transfer of responsibility for multi-versioning from local
disk storage to new hardware and architectural models.
Freitag et al. proposed memory-optimized MVCC for disk-
based DBMSs: by applying multi-versioning in memory and

Universal Library of Innovative Research and Studies

Page | 14

State Management in Distributed Systems Using the Example of Multi-Version Concurrency

Control (MVCC)

offloading long-lived versions and “cold” data to disk, the
authors manage to approach the latencies of in-memory
systems while retaining the cost-effectiveness of disk storage
[3]. This shifts the optimization focus from the classic “I/O
bottleneck” to a fine balance between the volume of versions
in memory and the frequency of garbage collection, which,
for distributed systems with a large number of replicas,
transforms into the task of a coordinated GC policy between
cluster nodes.

An even more radical step is taken by Motor (Zhang et al.),
extending multi-versioning to the scenario of distributed
transactions over disaggregated memory [10]. In such
an architecture, compute nodes access “shared” memory
pools via the network, and MVCC must ensure consistent
snapshots and version chains under high access latency.
The analytical breakdown of Motor shows that traditional
assumptions about the cheapness of local memory cease to
work: any additional version metadata (timestamps, pointers
to predecessors) directly converts into additional network
requests. This leads to the development of a principle for
minimizing specific network load per version, which is
transferred in the proposed architecture of this article to the
level of designing the state storage scheme of a distributed
system: versions must be grouped and aggregated so that
a single network round-trip covers the maximum possible
range of data and metadata.

The main idea of EEMARQ is to store multiple version nodes,
serving range queries over a logically frozen snapshot, while
memory is reclaimed via a lock-free reclamation scheme
coordinated with the version lifecycle. For practice, this
means that the MVCC subsystem can be moved out of the
classic DBMS into a library of concurrent data structures
underlying the execution layer of blockchain virtual machines
or the internal storage of Al agents: contract and agent states
can be stored in such structures, obtaining linearizable scans
without global locks.

At the level of distributed systems, reconciling MVCC
between primary and backup replicas proves to be an
important task. Helt et al. in the C5 paper show that existing
protocols for cloned concurrency control in primary-backup
schemes, where secondary nodes are obliged to reproduce
the commit order of the primary, inevitably limit the degree
of parallelism and can lead to unlimited replication lag [5].
The proposed C5 protocol ensures limited lag by forcing
the backup to execute writes with the same granularity as
the main system and to use row-granularity serialization.
Analytically, this emphasizes that any state management
architectures in a distributed system using MVCC and
asynchronous replication must be designed so that the
primary replica’s form of parallelism is reproducible by the
backups. Otherwise, the system faces a “choked” replication
effect, where secondary nodes constantly lag despite having
greater total computational power.

Integrating MVCC with blockchain architectures requires
accounting for additional factors—determinism,
cryptographic auditability, and consensus costs. The review
by Kalajdjieski et al. systematizes the family of databases
applicable in a blockchain context, including pure blockchain
DBMSs, “blockchain + classic DBMS” hybrids, and solutions
with state logging [6]. This review emphasizes that for many
scenarios, a hybrid approach is more promising, where
the DBMS layer provides rich data and transaction models
(including MVCC), and the blockchain is responsible for
the immutable log and consensus. In other words, multi-
versioning naturally “belongs” in the database layer, not the
block level.

Ge et al. concretize this idea in Hybrid Blockchain Database
Systems: they analyze the architecture of hybrid systems
where blockchain and DBMS work jointly, showing that under
typical loads, the bottleneck is not local query processing
but the consensus protocol [4]. Furthermore, part of the
solutions they utilize relies on multi-version storage, allowing
the separation of read latency for a consistent snapshot
from the transaction confirmation time in the chain. For the
architecture we are designing, this leads to an important
conclusion: for high-load blockchain execution layers, a
“thick” MVCC layer around a relatively “thin” consensus
core is more advantageous than the reverse. Consensus
is responsible for the linear order of commits, but specific
state snapshots for reading and even part of the preliminary
transaction validation should be served within the MVCC
subsystem, minimizing the number of calls to consensus.

A separate direction is the application of MVCC to ensure
interoperability and parallel processing in multi-shard
blockchain systems. Lin et al. propose an MVCC approach to
parallelizing the interaction of consortium blockchains: the
key idea is that data participating in cross-chain operations
is wrapped in multi-version objects, and the protocol
ensures the serializability of cross-chain transactions by
reconciling versions rather than through coarse global locks
[7]- Analytically, this manifests as replacing the distributed
two-phase commit (2PC) with a “version reconciliation”
protocol between chains: instead of locking resources on all
chains, the system checks the compatibility of object versions
participating in the operation and allows conflict only at the
level of version metadata.

Modern permissioned blockchains, such as Hyperledger
Fabric, already use MVCC as a basic mechanism for parallel
transaction processing; however, under high competition of
inter-shard transactions, it is MVCC conflicts that become
the key limitation. The work of Yang et al. (HiCoCS) shows
that with a large number of Cross-Shard Transactions (CSTx)
passing through the same intermediary accounts, Fabric
faces an avalanche-like growth in rollbacks due to concurrent
reading and writing of the same key versions [9]. The text of
the HiCoCS article emphasizes that Fabric implements data

Universal Library of Innovative Research and Studies

Page | 15

State Management in Distributed Systems Using the Example of Multi-Version Concurrency

Control (MVCC)

consistency using MVCC: each key-value pair is associated
with a version number, and any change generates a new
version; if the expected version does not match the actual
one, the transaction is rolled back. The authors demonstrate
that during inter-shard transfer via intermediaries, this

leads to constant conflicts over the state of intermediary
accounts, since many CSTx read and update the same key
simultaneously. Based on their analysis, a figure illustrating
a typical MVCC conflict scenario and the cross-shard scheme
in Hyperledger Fabric is presented (see Fig. 1).

RWSet: [Jbyte
Reads: []"KVRead
Key: string
Version: *version

Writes: [|*Writes
Key: string)
IsDelete: bool
Value: [|byte

/

MVCC

Version validation

Z éWSet World state)

N

WorldState: [Joyte
Key: string

Value: [|byte
Version: *version

Figure 1. MVCC conflict and example of cross-shard interaction in Hyperledger Fabric [9].

Figure 1 schematically shows how a series of cross-shard
transactions passing through the same intermediary account
causes Fabric to constantly detect desynchronization
between the expected and actual version number of the key
Lbalance. Under conditions of high contention, the majority
of transactions are forced to rollback and re-execute, which
radically reduces the system'’s effective throughput. HiCoCS
proposes using composite keys and virtual sub-brokers to
“split” the conflicting account into multiple logical keys and
thereby separate update streams, which in experimental
scenariosyields a3.5-20.2 timesincrease in CSTx throughput
and a significant reduction in latency [9].

From the perspective of distributed system state management,
an important result can be derived from this: MVCC at the
key level is insufficient for scalable cross-shard protocols; it
is necessary to design the key space and versioning scheme
in such a way that state hot spots (e.g., an intermediary’s
balance) are logically scattered across multiple keys or
structured into batches allowing for batch updates and
homomorphic aggregation, as HiCoCS does.

The consolidated analysis shows that for modern distributed
systems with a high degree of parallelism, several robust
patterns can be identified:

e “Multi-version snapshot over consensus” pattern: the
consensus protocol provides a linear order of commits,
while MVCC provides cheap reads of alogically consistent
snapshot without involving the consensus layer, as in
hybrid blockchain-DBMSs [4, 6];

e “Version lists with GC and lock-free access” pattern:
version garbage collection is synchronized with lock-free

data structures, allowing long reads and range queries
to be served without locks [1, 3, 8];

e “Cloned concurrency control” pattern: backup replicas
are forced to reproduce the version order of the primary
replica, and protocols like C5 ensure limited lag while
maintaining a high degree of parallelism [5];

e “Versions as a unit of cross-chain interoperability”
pattern: cross-chain and cross-shard transactions
operate on versioned objects rather than raw records,
reducing the need for global locks and 2PC [7, 9, 10].

The state management layer in these systems is built around
MVCC stores with change logging and cryptographic data
structures. Read state snapshots are formed via multi-version
lists over the commit log, while consensus and replication
protocols are responsible only for the linear order of writes.
This separation of load allows read latency to be kept at the
level of in-memory operations, even with significant costs of
the consensus protocol and replication between nodes and
data centers.

The greatest effect is yielded by a combination of three
techniques:

1. use of composite keys and logical partitioning of balances,
gas counters, and state aggregates, which reduces the
frequency of MVCC conflicts in hot spots;

2. offloading long-lived versions to storage tiers with lower
cost while maintaining the “hot” part in memory;

3. strict synchronization of the versioning scheme between
primary and backup nodes, which keeps replica lag
within operational requirements under a large number
of parallel transactions.

Universal Library of Innovative Research and Studies

Page | 16

State Management in Distributed Systems Using the Example of Multi-Version Concurrency

Control (MVCC)

These solutions correlate directly with the previously
identified patterns of “multi-version snapshot over consensus”,
“version lists with efficient GC and lock-free access”, and
“versions as a unit of cross-chain interoperability”.

For systems of the class of high-performance L2 blockchains
and agentic Al platforms processing hundreds of thousands
to millions of operations daily, the analysis results mean that
a reasonable state management architecture must include:

e a multi-version core oriented towards in-memory or
disaggregated-memory scenarios, with strict guarantees
regarding version garbage collector overhead and
support for locally lock-free data structures [1, 3, 8];

e aformally verified transaction layer (similar to vMVCC),
separated from the specific consensus protocol and
capable of serving as acommon basis for both blockchain
nodes and Al agent backends [2];

¢ mechanisms for cloned control and version reconciliation
between replicas and shards, ensuring limited lag and
reproducibility of primary replica parallelism [5, 10];

e a versioned model of cross-shard and cross-chain
interaction, where the unit of reconciliation is not
individual records but versions of logical objects and
aggregates, with the key space designed taking into
account the potential for “disaggregating” hot spots via
composite keys and virtual intermediaries [7, 9].

Thus, MVCC ceases to be a “local trick” for transaction
optimization and becomes a central mechanism for state
management in distributed systems. Modern approaches—
from time-and-space-bounded multi-version GC to highly
concurrent cross-shard schemes and hybrid blockchain-
DBMSs—set clear design principles that can serve as a
foundation for designing high-performance blockchain
execution layers and scalable platforms of interacting Al
agents.

DISCUSSION

Multi-version concurrency control in distributed systems
should not be viewed as an isolated technique for organizing
transactions, but as a central state management layer
around which architectural decisions regarding replication,
consensus, scaling, and inter-shard interaction are built.
Comparing the results of the works analyzed in the previous
section allows for the formulation of several key conclusions
for the practice of designing high-load blockchain systems
and agentic Al platforms using distributed state [1-10].

It becomes obvious that the classic view of MVCC as an
expensive but convenient transaction isolation mechanism
no longer corresponds to the realities of modern systems.
Constructions proposed by Ben-David et al. demonstrate that
version garbage collection can be organized in such a way
as to guarantee simultaneous time and space boundedness
without sacrificing wait-free/lock-free properties of data
structures [1]. This means that the use of MVCC does not

necessarily lead to uncontrollable growth in overhead costs
if the version architecture and reclamation algorithms
are designed taking into account the relevant theoretical
constraints. For the practice of scalable distributed systems,
this removes one of the traditional arguments against the
widespread application of MVCC in high-load scenarios.

The importance of formal verification of the MVCC core
is growing. The work on vMVCC demonstrates that the
implementation of a multi-version transactional library
can be strictly checked for the correctness of visibility and
serializability guarantees [2]. For financial and infrastructural
systems, including L2 blockchains and decentralized Al
agent platforms, this provides an important advantage:
the state management core ceases to be a “black box” and
becomes an object of formal proofs. Combined with fault-
tolerant consensus protocols and cryptographic auditability
of logs, such a verifiable MVCC subsystem can be viewed as
a trusted computing base from which the properties of the
entire platform are inherited.

Another aspect is related to exactly how MVCC is embedded
into the data storage and access architecture. Memory-
optimized MVCC for disk systems shows that a reasonable
separation of “hot” and “cold” versions between memory
and disk allows achieving latencies close to in-memory
systems while retaining the economy of disk storage [3].
In distributed systems with a large number of replicas,
this leads to the necessity of coordinating version storage
policy between nodes: if some replicas aggressively offload
versions to disk while others do not, snapshot semantics and
response times to identical requests can differ significantly.
In hybrid blockchain-DBMSs described by Ge et al., similar
decisions directly affect how effectively the database layer
can hide consensus layer latencies [4].

The review of hybrid blockchain-DBs and the generalizing
classification of databases for blockchain emphasize that the
most promising are architectures in which a rich transactional
model and MVCC are implemented at the DBMS level, while
the blockchain acts as an immutable log and consensus layer
[4, 6]. This opposes traditional attempts to embed multi-
versioning directly into the block level or smart contracts.
Hybrid solutions discussed in the literature show that such
a separation of responsibility allows obtaining both high
throughput of local read /write operations and a strict order
of commits set by the blockchain protocol [4, 6]. For systems
striving for tens of thousands of transactions per second per
core and sub-second confirmation latency, such a “thick”
MVCC layer around a thin consensus core appears to be the
most rational choice.

Fundamental limitations manifest when considering
replication and concurrency control in primary-backup
configurations. The analysis of C5 shows that a naive cloned
implementation of concurrency control, where backup
replicas “blindly” reproduce the primary’s commit sequence,
is either forced to significantly limit parallelism or leads to

Universal Library of Innovative Research and Studies

Page | 17

State Management in Distributed Systems Using the Example of Multi-Version Concurrency

Control (MVCC)

unlimited lagrelative to the primary replica [5]. The proposed
protocol, conversely, demonstrates that it is possible to
maintain a limited lag while preserving a sufficiently high
degree of parallelism if serialization granularity and version
structure are consistent between the primary and backup
systems [5]. For high-load blockchain execution layers, this
means that state replication cannot be viewed as a secondary
solution atop a local MVCC implementation: replication
protocols and multi-version layer design must be engineered
jointly.

Significant importance is also acquired by how MVCC is
used in cross-chain and cross-shard interaction. The MVCC
approach to parallelizing the interoperability of consortium
blockchains described by Lin et al. showed that cross-chain
operations can be described in terms of object version
reconciliation rather than global locks and two-phase
commits [7]. Instead of holding locks on all participating
chains, the system can check the compatibility of versions
of logical objects (balances, contract states, metadata) and
reject only those transactions that violate version consistency.
This brings cross-chain interaction closer to classic systems
with multi-version snapshots, where conflicts manifest at
the version level rather than at the level of coarse resource
locks.

In the context of permissioned blockchains such as
Hyperledger Fabric, the analysis of cross-shard transaction
competition shows that MVCC can turn into both a powerful
accelerator and a system bottleneck. The HiCoCS example
demonstrates that when using intermediary accounts through
which numerous cross-shard transactions pass, Fabric faces
an avalanche of MVCC conflicts: many transactions read the
same key versions and attempt to update them, leading to
mass rollbacks [9]. Projects like HiCoCS propose designing
the key space in such a way that state “hot spots” are logically
separated (via composite keys and virtual sub-brokers),
which significantly reduces conflict frequency and increases
throughput [9].

For a visual comparison of design principles deriving from
the reviewed works, it is expedient to highlight a set of
criteria by which MVCC architectures are evaluated in the
context of distributed systems and to correlate different
classes of solutions with them. A generalized picture is
presented in Table 1, which consolidates key emphases
characteristic of theoretically oriented works on version
garbage collection and lock-free structures [1, 8], systemic-
practical optimizations of memory and storage [3, 10], as
well as hybrid blockchain-DBs and cloned control protocols.

Table 1. Key Design Emphases of MVCC Architectures in Distributed Systems [1-6, 8, 10]

Class of Solutions Main Focus Typical Trade-offs Practical Implications for

Distributed Systems

Theoretical GC and Lock-free | Guarantees on time/ | Complexity of implementation | Possibility of safe version

Structures memory, and progress and debugging scaling
Memory-optimized MVCC for | Balance between | Complex version placement | Different latency profiles on
Disk DBMS memory/disk policy replicas

Increased role of metadata
format

Minimization of network
load

Separation of DBMS and
blockchain roles

Disaggregated-memory MVCC Necessity of co-design with

network architecture

Hybrid Blockchain-DBs Reduction of load on the

consensus layer

Complexity of transaction and
block reconciliation

Cloned Control (Primary- | Limited replica lag Constraints on the form of|Requirement for joint design
Backup) parallelism of MVCC and replication
Permissioned and Consortium | Parallelism and | Conflicts at hot state spots Necessity of designing the
Blockchains with MVCC interoperability key space

As seen in Table 1, different directions of MVCC development
accentuate various aspects of the same problem—managing
a large number of versions under conditions of distribution
and high competition. Works on version garbage collection
and lock-free structures [1, 8] maximize progress and
theoretical guarantees but are complex to implement;
memory-optimized and disaggregated-memory approaches
[3, 10] concentrate on the latency profile and storage cost;
hybrid blockchain-DBs and cloned control [4-6] emphasize
the necessity of joint design of MVCC with replication and
consensus. Collectively, this reinforces the thesis that a
distributed system designer must think of MVCC not as a
library, but as the core of the data architecture.

Moving from classification to target scenarios, three types
of systems appear most important: high-performance
public or semi-public blockchains (including L2 solutions),
permissioned consortia with cross-shard interaction, and
large-scale agentic Al platforms. In each of these scenarios,
requirements for MVCC differ noticeably, although the basic
principles remain unified.

In high-performance blockchain systems, the key factor is the
ability of the execution layer to support massive parallelism
without imposing excessive limitations on the consensus
level. Hybrid blockchain-DBs and blockchain database
classifications show that in such systems, it is expedient
to transfer the implementation of complex isolation logic

Universal Library of Innovative Research and Studies

Page | 18

State Management in Distributed Systems Using the Example of Multi-Version Concurrency

Control (MVCC)

and multi-versioning to the database layer [4, 6], leaving
consensus the role of a linear commit log. Ideas of memory-
bounded GC [1], memory-optimized storage [3], and cloned
control protocols that guarantee backup nodes “keep up”
with primary ones [5] are particularly valuable here.

For permissioned consortia, where the main bottleneck is
cross-shard transaction conflicts, the design of the key space
and versioning scheme proves critical. Works on MVCC
interoperability parallelization [7] and scaling cross-sharding
transactions [9] demonstrate that even with identical MVCC
mechanisms (key versioning, optimistic version checking),
changes in the logical data model—introduction of composite
keys, virtual sub-brokers, splitting state into multiple logical
segments—are capable of radically improving throughput
and reducing the conflict rate.

Agentic Al platforms, although significantly different in

domain, face similar problems: a multitude of independent
agents simultaneously read and update shared knowledge
stores, task queues, and interaction logs. For such systems,
it is expedient to use ideas from lock-free structures
and version GC [1, 8] to support long analytical queries
and historical agent state scans without blocking short
transactional updates. At the same time, a hybrid approach
with a separation of responsibility between a transactional
DB and an external event log (e.g., blockchain or log-oriented
systems) can ensure both recoverability and auditability of
interaction history [4, 6].

From the perspective of architectural solutions, it is useful
to correlate the key requirements of these three scenarios
with recommended MVCC usage patterns deriving from
the reviewed works. A generalization of such alignment is
presented in Table 2.

Table 2. Target Scenario Requirements and Corresponding MVCC Patterns (based on [1-10])

L2 Blockchains determinism, verifiability

System Type Key State Management | Recommended MVCC Patterns and Techniques
Requirements
High-Performance Public/ | Maximum parallelism, | Hybrid Blockchain-DB with “thick” MVCC layer; formally

verified transaction core; memory-constrained GC; consistent
cloned control

Permissioned Consortiums
with Cross-Sharding

High share of cross-shard
transactions, absence of key
bottlenecks

MVCC cross-chain protocols; key space design (composite
keys, sub-proxies); minimization of hot spot conflicts

Agent Al Platforms Massive agent parallelism,

long analytical queries

Lock-free structures with MVCC; efficient version GC;
separate storage of operational and historical data; possible
integration with event log/blockchain

Disaggregated
Systems

Memory | High memory access latency,

network scaling

Compact version metadata; aggregated traversal of version
chains; joint design of data format and network architecture

Replicated Transactional
Clusters

Limited replica lag,
reproducibility of parallelism

Cloned control protocols; reconciliation of serialization
granularity and version structure between primary and
backups

Table 2 shows that the same basic MVCC ideas—multi-version
snapshots, separation of reading from confirmed commit,
version as a reconciliation element—manifest differently in
distinct classes of systems. For blockchain systems, emphasis
shifts to determinism and auditability: formal verification
and integration with the consensus protocol are important
[2, 4, 6]. For permissioned consortiums, data modeling and
minimization of cross-shard transaction conflicts come to the
fore [7, 9]. For agentic Al platforms, lock-free properties and
the ability to serve long analytical queries without degrading
short transactions are paramount [1, 3, 8]. In systems with
disaggregated memory, the requirement to minimize the
number of network requests per version unit is added [10].

MVCC not only fits into the specialization of an engineer
working with large-scale distributed systems, blockchain
platforms, and agentic Al architectures but effectively
becomes the central mechanism ensuring their scalability,
consistency, and auditability. The results of the analytical

research form a conceptual framework upon which high-
performance blockchain execution layers and scalable
platforms of interacting Al agents can be designed and
developed, and also set the agenda for future experimental
and applied works in this field.

CONCLUSION

The conducted research confirmed that MVCC in modern
distributed systems should be treated as a key state
management layer, not an auxiliary transaction isolation
mechanism. Comparative analysis of theoretical and
systems-oriented approaches showed that multi-version
garbage collection can be organized with simultaneous
time and space constraints, integrated with lock-free data
structures, and adapted to various storage profiles, including
in-memory, disk, and disaggregated memory architectures.
This allows scaling the number of versions without an
exponential increase in overhead costs and provides a basis
for safe parallelism.

Universal Library of Innovative Research and Studies

Page | 19

State Management in Distributed Systems Using the Example of Multi-Version Concurrency

Control (MVCC)

The investigation of MVCC integration with protocols
for consensus, replication, and inter-shard interaction
demonstrated that the best results are achieved in
architectures where complex multi-version and transaction
logic is implemented at the level of a database or specialized
transactional core, while the blockchain and other log
subsystems are responsible for the linear order of commits
and cryptographic auditability. Cloned control protocols,
hybrid blockchain-DBMSs, and MVCC-oriented cross-
sharding schemes show that the coordinated design of the
multi-version layer, data model, and replication algorithms
allows simultaneously limiting replica lag, reducing conflict
frequency, and increasing the system’s effective throughput.

The formulated architectural patterns of state management—
"multi-version snapshot over consensus”, “version lists with
efficient GC and lock-free access”, “cloned control with limited
lag”, and “versions as a unit of cross-chain interoperability”—
set a practical framework for designing high-performance
L2 blockchains, permissioned consortiums, and agentic Al
platforms. It is shown that the correct choice of key space,
versioning scheme, and metadata format is as important as
the choice of a specific consensus algorithm. A limitation of
the work is the analytical nature of the conclusions without
independent experimental measurements on industrial
infrastructure. Nevertheless, the comprehensive comparison
of theoretical and applied studies allowed for forming
a holistic model of using MVCC as a state management
core in distributed systems and outlining directions for
further work: experimental validation of the proposed
patterns on real loads, deepened formalization of interfaces
between verifiable MVCC cores and high-level languages
of smart contracts and agents, as well as the adaptation of
multi-version approaches to new hardware and network
architectures.

REFERENCES

1. Ben-David, N, Blelloch, G. E., Fatourou, P, Ruppert,
E. Sun, Y, & Wei, Y. (2021). Space and time bounded
multiversion garbage collection. arXiv. https://arxiv.
org/abs/2108.02775

2. Chang, Y-S, Jung, R., Sharma, U., Tassarotti,]., Kaashoek,
M.F, &Zeldovich, N. (2023, July 10-12). Verifying vMVCC,
a high-performance transaction library using multi-
version concurrency control. Proceedings of the 17th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 23). USENIX Association. https://
www.usenix.org/conference/osdi23/presentation/
chan

10.

Freitag, M., Kemper, A., & Neumann, T. (2022). Memory-
optimized multi-version concurrency control for
disk-based database systems. Proceedings of the
VLDB Endowment, 15(11), 2797-2810. https://doi.
org/10.14778/3551793.3551832

Ge,Z.,Loghin,D.,00i,B.C.,Ruan,P,&Wang, T.(2022).Hybrid
blockchain database systems: Design and performance.
Proceedings of the VLDB Endowment, 15(5), 1092-1104.
https://doi.org/10.14778/3510397.3510406

Helt, J., Sharma, A., Abadi, D. |, Lloyd, W.,, & Faleiro,].
M. (2022). C5: Cloned concurrency control that always
keeps up. Proceedings of the VLDB Endowment, 16(1).
1-14. https://doi.org/10.14778/3561261.3561262

Kalajdjieski, J.,, Raikwar, M., Arsov, N., Velinov, G., &
Gligoroski, D. (2023). Databases fit for blockchain
technology: A complete overview. Blockchain:
Research and Applications, 4(1), 100116. https://doi.
org/10.1016/j.bcra.2022.100116

Lin, W, Qu, Q. Ning, L. Fan,], & Jiang, Q. (2021). A
MVCC approach to parallelizing interoperability of
consortium blockchain. In K.-M. Chao, M. A. Jabbar, &
H. Zhang (Eds.), Parallel and distributed computing,
applications and technologies: 22nd International
Conference, PDCAT 2021, Guangzhou, China, December
17-19, 2021, Proceedings, 273-285. Springer. https://
doi.org/10.1007/978-3-030-96772-7_25

Sheffi, G., Ramalhete, P,, & Petrank, E. (2022). EEMARQ:
Efficient lock-free range queries with memory
reclamation. arXiv preprint arXiv:2210.17086. https://
doi.org/10.48550/arXiv.2210.17086

Yang, L., Dong, X.,, Wan, Z.,, Lu, D, Zhang, Y., & Shen,
Y. (2025). HiCoCS: High concurrency cross-sharding
on permissioned blockchains. arXiv preprint
arXiv:2501.04265. https://doi.org/10.48550/
arXiv.2501.04265

Zhang, M., Hua, Y., & Yang, Z. (2024, July 10-12). Motor:
Enabling multi-versioning for distributed transactions
on disaggregated memory. Proceedings of the 18th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 24). USENIX Association. https://
www.usenix.org/conference/osdi24/presentation/
zhang-ming

Copyright: © 2026 The Author(s). This is an open access article distributed under the Creative Commons Attribution License,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Universal Library of Innovative Research and Studies

Page | 20

