
Page | 13www.ulopenaccess.com

ISSN: 3065-0003 | Volume 3, Issue 1

Open Access | PP: 13-20

DOI: https://doi.org/10.70315/uloap.ulirs.2026.0301003

Universal Library of Innovative Research and Studies Research Article

State Management in Distributed Systems Using the Example of 
Multi-Version Concurrency Control (MVCC)
Brandon Vrooman
Software Engineer, Innobit Inc, Toronto, Canada.

Citation: Brandon Vrooman, “State Management in Distributed Systems Using the Example of Multi-Version Concurrency 
Control (MVCC)”, Universal Library of Innovative Research and Studies, 2026; 3(1): 13-20. DOI: https://doi.org/10.70315/
uloap.ulirs.2026.0301003.

This article analyzes state management in distributed systems based on Multi-Version Concurrency Control (MVCC). The 
relevance of this work is driven by the growth of high-load blockchain platforms and agentic AI systems, for which scalability 
and deterministic state consistency are critical requirements. The novelty of the research lies in the comprehensive 
examination of MVCC not as a local mechanism for transaction isolation, but as a central state management layer 
integrated with architectures for replication, consensus, inter-shard interaction, and disaggregated memory. The paper 
describes modern approaches to version garbage collection, lock-free data structures, hybrid blockchain-DBMS systems, 
cloned control protocols, and cross-shard transactions; their limitations and areas of applicability are studied. Particular 
attention is paid to identifying architectural patterns and recommendations for high-performance L2 blockchains and 
agentic AI platforms. To achieve the set objective, methods of comparative and systemic analysis of scientific publications 
are employed. The conclusion describes findings regarding the role of MVCC as a state management core and formulates 
directions for further research. The article will be useful to engineers and researchers involved in the design of large-scale 
distributed, blockchain, and AI systems.

Keywords: Distributed Systems, Multi-Version Concurrency Control, Blockchain, Cloned Concurrency Control, Hybrid 
Blockchain-DBMS, Agentic AI Platforms, Disaggregated Memory, State Management.

Abstract

Introduction
Modern distributed systems—ranging from blockchain 
platforms and financial infrastructures to agentic AI 
networks—face the necessity of simultaneously ensuring 
high throughput, strict consistency, and deterministic 
reproduction of computations. The growth in load, the 
increasing complexity of protocols, and the emergence of 
architectures with disaggregated memory intensify the 
requirements for state management layers: they must 
support massive parallelism, fault tolerance, and behavior 
auditability without an exponential increase in overhead 
costs. Against this background, Multi-Version Concurrency 
Control (MVCC) is outgrowing its role as a local transaction 
isolation mechanism and is becoming a key tool for organizing 
consistent snapshots and controlled state evolution in a 
distributed environment.

The objective is to systematize modern approaches to multi-
version concurrency control in distributed systems and 
demonstrate how MVCC functions as a state management 
layer in high-performance blockchain platforms and agentic 
AI networks. The tasks are:

To compare theoretically oriented and engineering MVCC 
schemes, covering version garbage collection, lock-free data 
structures, memory-optimized solutions, and architectures 
with disaggregated memory.

To analyze the interaction of MVCC with protocols for 
consensus, replication, and inter-shard exchange in 
blockchain systems and transactional clusters.

To identify robust architectural patterns of state management 
for L2 blockchains, permissioned consortiums, and agentic AI 
platforms, and to formulate recommendations for designing 
the state layer.

The novelty of the work lies in considering MVCC through the 
prism of the entire distributed system architecture, rather 
than a separate DBMS or node: multi-versioning is interpreted 
as a common language for state reconciliation between 
replicas, shards, chains, and agents. Unlike existing studies 
focused either on local concurrency control algorithms or 
on specific aspects of blockchain storage, this article offers a 
holistic picture linking multi-version GC, formally verifiable 
transactional cores, hybrid blockchain-DBMS systems, 



Page | 14Universal Library of Innovative Research and Studies

State Management in Distributed Systems Using the Example of Multi-Version Concurrency 
Control (MVCC)

cloned control protocols, and MVCC-oriented cross-sharding 
schemes into a single state management model.

Materials and Methods
Modern scientific works reflecting various aspects of MVCC 
application in distributed systems, databases, and blockchain 
architectures were used as research materials. N. Ben-David, 
G. E. Blelloch, P. Fatourou, et al. proposed schemes for multi-
version garbage collection with simultaneous time and space 
bounds and integration with wait-free data structures [1]. 
Y.-S. Chang, R. Jung, U. Sharma, J. Tassarotti, M. F. Kaashoek, 
and N. Zeldovich developed and formally verified the vMVCC 
transactional library, demonstrating the possibility of 
strictly proving the correctness of a high-performance MVCC 
core [2]. M. Freitag, A. Kemper, and T. Neumann investigated 
memory-optimized MVCC for disk-based DBMSs, showing 
how separating “hot” and “cold” versions between memory 
and disk affects latency and storage costs [3]. Z. Ge, D. Loghin, 
B. C. Ooi, P. Ruan, and T. Wang analyzed hybrid blockchain-
DBMS systems where the transactional model and MVCC are 
implemented in the database, while the blockchain serves as 
an immutable log and consensus layer [4]. J. Helt, A. Sharma, 
D. J. Abadi, W. Lloyd, and J. M. Faleiro proposed the C5 
protocol for cloned concurrency control in primary–backup 
configurations, ensuring limited replica lag while maintaining 
parallelism [5]. J. Kalajdjieski, M. Raikwar, N. Arsov, G. Velinov, 
and D. Gligoroski presented a review of databases suitable 
for use in a blockchain context, systematizing data and 
transaction models, including multi-version approaches [6]. 
W. Lin, Q. Qu, L. Ning, J. Fan, and Q. Jiang proposed an MVCC 
approach to parallelizing the interoperability of consortium 
blockchains, in which cross-chain transactions are described 
through object version reconciliation [7]. G. Sheffi, P. 
Ramalhete, and E. Petrank developed EEMARQ—a lock-free 
structure supporting efficient range queries and memory 
management in a multi-version environment [8]. L. Yang, X. 
Dong, Z. Wan, D. Lu, Y. Zhang, and Y. Shen, in their work on 
HiCoCS, showed how MVCC conflicts in Hyperledger Fabric 
limit the throughput of cross-sharding transactions and 
proposed schemes for logical separation of state hot spots 
[9]. Finally, M. Zhang, Y. Hua, and Z. Yang described Motor, 
a system implementing multi-versioning for distributed 
transactions in architectures with disaggregated memory, 
which allowed for evaluating the impact of network latency 
on version metadata costs [10].

Comparative analysis and synthesis of scientific sources, 
methods of systemic and structural-functional analysis 
of distributed system architectures, as well as elements 
of conceptual and architectural modelling, were 
applied to write the article. These methods allowed for 
formulating generalizing state management patterns and 
recommendations for their practical application.

Results
The results of the analytical research show that multi-

version concurrency control (MVCC) in modern distributed 
systems is evolving towards an increasingly tight connection 
with storage, replication, and consensus architectures. A 
comparison of recent works on MVCC, hybrid blockchain-
DBMSs, and high-performance cross-shard transaction 
mechanisms allows for the formulation of a holistic state 
management model suitable for high-load blockchain 
platforms and distributed AI systems processing millions of 
requests per day [1–10].

Common to the examined solutions is a shift in focus 
from the local “server–database” level to the global 
“cluster–blockchain–agent platform” level. MVCC ceases 
to be exclusively a transaction isolation mechanism and 
transforms into a universal state management layer, 
upon which consensus protocols, sharding, cross-shard 
transactions, and agent interactions are implemented. In 
this layer, the following become key: 1) version storage cost, 
2) determinism and behavioral auditability, 3) reconciliation 
of version snapshots between replicas and shards, 4) the 
impact of version sampling on throughput and latency.

A basic limiting factor is the accumulation of old versions. 
The garbage collection method for multi-version structures 
proposed by Ben-David et al. demonstrates that it is possible 
to achieve simultaneous time and space bounds: the average 
time to reclaim one version remains O(1), and the number 
of supported “extra” versions does not exceed a constant 
factor of the minimum necessary [1]. The technique relies on 
two components—a wait-free structure for tracking ranges 
of obsolete versions and a new lock-free doubly linked list 
structure that allows for efficient removal of arbitrary nodes 
from version lists. Analytically, this sets a lower bound for 
MVCC overhead at the memory level and provides a basis for 
high-load systems where numerous long-lived reads (e.g., 
analytics over live blockchain state or global state scans by 
AI agents) should not lead to an explosive growth in the 
number of versions.

The verifiability of the MVCC mechanism becomes critical as 
protocols grow in complexity. The work of Chang et al. on 
vMVCC shows that a high-performance transactional library 
with MVCC can be formally verified, including correctness of 
visibility, absence of serializability anomalies, and invariants 
regarding the locking protocol and log structure [2]. For 
distributed systems, this means that the state management 
layer can act as a formally proven core upon which replication 
and consensus protocols are layered. This approach is 
particularly important for financial and infrastructural 
blockchain systems, where an error in MVCC implementation 
at a bottleneck of the execution layer can lead to irretrievable 
loss of funds or non-deterministic forks.

An important direction in MVCC evolution has been the 
transfer of responsibility for multi-versioning from local 
disk storage to new hardware and architectural models. 
Freitag et al. proposed memory-optimized MVCC for disk-
based DBMSs: by applying multi-versioning in memory and 



Page | 15Universal Library of Innovative Research and Studies

State Management in Distributed Systems Using the Example of Multi-Version Concurrency 
Control (MVCC)

offloading long-lived versions and “cold” data to disk, the 
authors manage to approach the latencies of in-memory 
systems while retaining the cost-effectiveness of disk storage 
[3]. This shifts the optimization focus from the classic “I/O 
bottleneck” to a fine balance between the volume of versions 
in memory and the frequency of garbage collection, which, 
for distributed systems with a large number of replicas, 
transforms into the task of a coordinated GC policy between 
cluster nodes.

An even more radical step is taken by Motor (Zhang et al.), 
extending multi-versioning to the scenario of distributed 
transactions over disaggregated memory [10]. In such 
an architecture, compute nodes access “shared” memory 
pools via the network, and MVCC must ensure consistent 
snapshots and version chains under high access latency. 
The analytical breakdown of Motor shows that traditional 
assumptions about the cheapness of local memory cease to 
work: any additional version metadata (timestamps, pointers 
to predecessors) directly converts into additional network 
requests. This leads to the development of a principle for 
minimizing specific network load per version, which is 
transferred in the proposed architecture of this article to the 
level of designing the state storage scheme of a distributed 
system: versions must be grouped and aggregated so that 
a single network round-trip covers the maximum possible 
range of data and metadata.

The main idea of EEMARQ is to store multiple version nodes, 
serving range queries over a logically frozen snapshot, while 
memory is reclaimed via a lock-free reclamation scheme 
coordinated with the version lifecycle. For practice, this 
means that the MVCC subsystem can be moved out of the 
classic DBMS into a library of concurrent data structures 
underlying the execution layer of blockchain virtual machines 
or the internal storage of AI agents: contract and agent states 
can be stored in such structures, obtaining linearizable scans 
without global locks.

At the level of distributed systems, reconciling MVCC 
between primary and backup replicas proves to be an 
important task. Helt et al. in the C5 paper show that existing 
protocols for cloned concurrency control in primary–backup 
schemes, where secondary nodes are obliged to reproduce 
the commit order of the primary, inevitably limit the degree 
of parallelism and can lead to unlimited replication lag [5]. 
The proposed C5 protocol ensures limited lag by forcing 
the backup to execute writes with the same granularity as 
the main system and to use row-granularity serialization. 
Analytically, this emphasizes that any state management 
architectures in a distributed system using MVCC and 
asynchronous replication must be designed so that the 
primary replica’s form of parallelism is reproducible by the 
backups. Otherwise, the system faces a “choked” replication 
effect, where secondary nodes constantly lag despite having 
greater total computational power.

Integrating MVCC with blockchain architectures requires 
accounting for additional factors—determinism, 
cryptographic auditability, and consensus costs. The review 
by Kalajdjieski et al. systematizes the family of databases 
applicable in a blockchain context, including pure blockchain 
DBMSs, “blockchain + classic DBMS” hybrids, and solutions 
with state logging [6]. This review emphasizes that for many 
scenarios, a hybrid approach is more promising, where 
the DBMS layer provides rich data and transaction models 
(including MVCC), and the blockchain is responsible for 
the immutable log and consensus. In other words, multi-
versioning naturally “belongs” in the database layer, not the 
block level.

Ge et al. concretize this idea in Hybrid Blockchain Database 
Systems: they analyze the architecture of hybrid systems 
where blockchain and DBMS work jointly, showing that under 
typical loads, the bottleneck is not local query processing 
but the consensus protocol [4]. Furthermore, part of the 
solutions they utilize relies on multi-version storage, allowing 
the separation of read latency for a consistent snapshot 
from the transaction confirmation time in the chain. For the 
architecture we are designing, this leads to an important 
conclusion: for high-load blockchain execution layers, a 
“thick” MVCC layer around a relatively “thin” consensus 
core is more advantageous than the reverse. Consensus 
is responsible for the linear order of commits, but specific 
state snapshots for reading and even part of the preliminary 
transaction validation should be served within the MVCC 
subsystem, minimizing the number of calls to consensus.

A separate direction is the application of MVCC to ensure 
interoperability and parallel processing in multi-shard 
blockchain systems. Lin et al. propose an MVCC approach to 
parallelizing the interaction of consortium blockchains: the 
key idea is that data participating in cross-chain operations 
is wrapped in multi-version objects, and the protocol 
ensures the serializability of cross-chain transactions by 
reconciling versions rather than through coarse global locks 
[7]. Analytically, this manifests as replacing the distributed 
two-phase commit (2PC) with a “version reconciliation” 
protocol between chains: instead of locking resources on all 
chains, the system checks the compatibility of object versions 
participating in the operation and allows conflict only at the 
level of version metadata.

Modern permissioned blockchains, such as Hyperledger 
Fabric, already use MVCC as a basic mechanism for parallel 
transaction processing; however, under high competition of 
inter-shard transactions, it is MVCC conflicts that become 
the key limitation. The work of Yang et al. (HiCoCS) shows 
that with a large number of Cross-Shard Transactions (CSTx) 
passing through the same intermediary accounts, Fabric 
faces an avalanche-like growth in rollbacks due to concurrent 
reading and writing of the same key versions [9]. The text of 
the HiCoCS article emphasizes that Fabric implements data 



Page | 16Universal Library of Innovative Research and Studies

State Management in Distributed Systems Using the Example of Multi-Version Concurrency 
Control (MVCC)

consistency using MVCC: each key–value pair is associated 
with a version number, and any change generates a new 
version; if the expected version does not match the actual 
one, the transaction is rolled back. The authors demonstrate 
that during inter-shard transfer via intermediaries, this 

leads to constant conflicts over the state of intermediary 
accounts, since many CSTx read and update the same key 
simultaneously. Based on their analysis, a figure illustrating 
a typical MVCC conflict scenario and the cross-shard scheme 
in Hyperledger Fabric is presented (see Fig. 1).

Figure 1. MVCC conflict and example of cross-shard interaction in Hyperledger Fabric [9].

Figure 1 schematically shows how a series of cross-shard 
transactions passing through the same intermediary account 
causes Fabric to constantly detect desynchronization 
between the expected and actual version number of the key 
I.balance. Under conditions of high contention, the majority 
of transactions are forced to rollback and re-execute, which 
radically reduces the system’s effective throughput. HiCoCS 
proposes using composite keys and virtual sub-brokers to 
“split” the conflicting account into multiple logical keys and 
thereby separate update streams, which in experimental 
scenarios yields a 3.5–20.2 times increase in CSTx throughput 
and a significant reduction in latency [9].

From the perspective of distributed system state management, 
an important result can be derived from this: MVCC at the 
key level is insufficient for scalable cross-shard protocols; it 
is necessary to design the key space and versioning scheme 
in such a way that state hot spots (e.g., an intermediary’s 
balance) are logically scattered across multiple keys or 
structured into batches allowing for batch updates and 
homomorphic aggregation, as HiCoCS does.

The consolidated analysis shows that for modern distributed 
systems with a high degree of parallelism, several robust 
patterns can be identified:

“Multi-version snapshot over consensus” pattern: the •	
consensus protocol provides a linear order of commits, 
while MVCC provides cheap reads of a logically consistent 
snapshot without involving the consensus layer, as in 
hybrid blockchain-DBMSs [4, 6];

“Version lists with GC and lock-free access” pattern: •	
version garbage collection is synchronized with lock-free 

data structures, allowing long reads and range queries 
to be served without locks [1, 3, 8];

“Cloned concurrency control” pattern: backup replicas •	
are forced to reproduce the version order of the primary 
replica, and protocols like C5 ensure limited lag while 
maintaining a high degree of parallelism [5];

“Versions as a unit of cross-chain interoperability” •	
pattern: cross-chain and cross-shard transactions 
operate on versioned objects rather than raw records, 
reducing the need for global locks and 2PC [7, 9, 10].

The state management layer in these systems is built around 
MVCC stores with change logging and cryptographic data 
structures. Read state snapshots are formed via multi-version 
lists over the commit log, while consensus and replication 
protocols are responsible only for the linear order of writes. 
This separation of load allows read latency to be kept at the 
level of in-memory operations, even with significant costs of 
the consensus protocol and replication between nodes and 
data centers.

The greatest effect is yielded by a combination of three 
techniques:

use of composite keys and logical partitioning of balances, 1.	
gas counters, and state aggregates, which reduces the 
frequency of MVCC conflicts in hot spots;

offloading long-lived versions to storage tiers with lower 2.	
cost while maintaining the “hot” part in memory;

strict synchronization of the versioning scheme between 3.	
primary and backup nodes, which keeps replica lag 
within operational requirements under a large number 
of parallel transactions.



Page | 17Universal Library of Innovative Research and Studies

State Management in Distributed Systems Using the Example of Multi-Version Concurrency 
Control (MVCC)

These solutions correlate directly with the previously 
identified patterns of “multi-version snapshot over consensus”, 
“version lists with efficient GC and lock-free access”, and 
“versions as a unit of cross-chain interoperability”.

For systems of the class of high-performance L2 blockchains 
and agentic AI platforms processing hundreds of thousands 
to millions of operations daily, the analysis results mean that 
a reasonable state management architecture must include:

a multi-version core oriented towards in-memory or •	
disaggregated-memory scenarios, with strict guarantees 
regarding version garbage collector overhead and 
support for locally lock-free data structures [1, 3, 8];

a formally verified transaction layer (similar to vMVCC), •	
separated from the specific consensus protocol and 
capable of serving as a common basis for both blockchain 
nodes and AI agent backends [2];

mechanisms for cloned control and version reconciliation •	
between replicas and shards, ensuring limited lag and 
reproducibility of primary replica parallelism [5, 10];

a versioned model of cross-shard and cross-chain •	
interaction, where the unit of reconciliation is not 
individual records but versions of logical objects and 
aggregates, with the key space designed taking into 
account the potential for “disaggregating” hot spots via 
composite keys and virtual intermediaries [7, 9].

Thus, MVCC ceases to be a “local trick” for transaction 
optimization and becomes a central mechanism for state 
management in distributed systems. Modern approaches—
from time-and-space-bounded multi-version GC to highly 
concurrent cross-shard schemes and hybrid blockchain-
DBMSs—set clear design principles that can serve as a 
foundation for designing high-performance blockchain 
execution layers and scalable platforms of interacting AI 
agents.

Discussion
Multi-version concurrency control in distributed systems 
should not be viewed as an isolated technique for organizing 
transactions, but as a central state management layer 
around which architectural decisions regarding replication, 
consensus, scaling, and inter-shard interaction are built. 
Comparing the results of the works analyzed in the previous 
section allows for the formulation of several key conclusions 
for the practice of designing high-load blockchain systems 
and agentic AI platforms using distributed state [1–10].

It becomes obvious that the classic view of MVCC as an 
expensive but convenient transaction isolation mechanism 
no longer corresponds to the realities of modern systems. 
Constructions proposed by Ben-David et al. demonstrate that 
version garbage collection can be organized in such a way 
as to guarantee simultaneous time and space boundedness 
without sacrificing wait-free/lock-free properties of data 
structures [1]. This means that the use of MVCC does not 

necessarily lead to uncontrollable growth in overhead costs 
if the version architecture and reclamation algorithms 
are designed taking into account the relevant theoretical 
constraints. For the practice of scalable distributed systems, 
this removes one of the traditional arguments against the 
widespread application of MVCC in high-load scenarios.

The importance of formal verification of the MVCC core 
is growing. The work on vMVCC demonstrates that the 
implementation of a multi-version transactional library 
can be strictly checked for the correctness of visibility and 
serializability guarantees [2]. For financial and infrastructural 
systems, including L2 blockchains and decentralized AI 
agent platforms, this provides an important advantage: 
the state management core ceases to be a “black box” and 
becomes an object of formal proofs. Combined with fault-
tolerant consensus protocols and cryptographic auditability 
of logs, such a verifiable MVCC subsystem can be viewed as 
a trusted computing base from which the properties of the 
entire platform are inherited.

Another aspect is related to exactly how MVCC is embedded 
into the data storage and access architecture. Memory-
optimized MVCC for disk systems shows that a reasonable 
separation of “hot” and “cold” versions between memory 
and disk allows achieving latencies close to in-memory 
systems while retaining the economy of disk storage [3]. 
In distributed systems with a large number of replicas, 
this leads to the necessity of coordinating version storage 
policy between nodes: if some replicas aggressively offload 
versions to disk while others do not, snapshot semantics and 
response times to identical requests can differ significantly. 
In hybrid blockchain-DBMSs described by Ge et al., similar 
decisions directly affect how effectively the database layer 
can hide consensus layer latencies [4].

The review of hybrid blockchain-DBs and the generalizing 
classification of databases for blockchain emphasize that the 
most promising are architectures in which a rich transactional 
model and MVCC are implemented at the DBMS level, while 
the blockchain acts as an immutable log and consensus layer 
[4, 6]. This opposes traditional attempts to embed multi-
versioning directly into the block level or smart contracts. 
Hybrid solutions discussed in the literature show that such 
a separation of responsibility allows obtaining both high 
throughput of local read/write operations and a strict order 
of commits set by the blockchain protocol [4, 6]. For systems 
striving for tens of thousands of transactions per second per 
core and sub-second confirmation latency, such a “thick” 
MVCC layer around a thin consensus core appears to be the 
most rational choice.

Fundamental limitations manifest when considering 
replication and concurrency control in primary–backup 
configurations. The analysis of C5 shows that a naive cloned 
implementation of concurrency control, where backup 
replicas “blindly” reproduce the primary’s commit sequence, 
is either forced to significantly limit parallelism or leads to 



Page | 18Universal Library of Innovative Research and Studies

State Management in Distributed Systems Using the Example of Multi-Version Concurrency 
Control (MVCC)

unlimited lag relative to the primary replica [5]. The proposed 
protocol, conversely, demonstrates that it is possible to 
maintain a limited lag while preserving a sufficiently high 
degree of parallelism if serialization granularity and version 
structure are consistent between the primary and backup 
systems [5]. For high-load blockchain execution layers, this 
means that state replication cannot be viewed as a secondary 
solution atop a local MVCC implementation: replication 
protocols and multi-version layer design must be engineered 
jointly.

Significant importance is also acquired by how MVCC is 
used in cross-chain and cross-shard interaction. The MVCC 
approach to parallelizing the interoperability of consortium 
blockchains described by Lin et al. showed that cross-chain 
operations can be described in terms of object version 
reconciliation rather than global locks and two-phase 
commits [7]. Instead of holding locks on all participating 
chains, the system can check the compatibility of versions 
of logical objects (balances, contract states, metadata) and 
reject only those transactions that violate version consistency. 
This brings cross-chain interaction closer to classic systems 
with multi-version snapshots, where conflicts manifest at 
the version level rather than at the level of coarse resource 
locks.

In the context of permissioned blockchains such as 
Hyperledger Fabric, the analysis of cross-shard transaction 
competition shows that MVCC can turn into both a powerful 
accelerator and a system bottleneck. The HiCoCS example 
demonstrates that when using intermediary accounts through 
which numerous cross-shard transactions pass, Fabric faces 
an avalanche of MVCC conflicts: many transactions read the 
same key versions and attempt to update them, leading to 
mass rollbacks [9]. Projects like HiCoCS propose designing 
the key space in such a way that state “hot spots” are logically 
separated (via composite keys and virtual sub-brokers), 
which significantly reduces conflict frequency and increases 
throughput [9].

For a visual comparison of design principles deriving from 
the reviewed works, it is expedient to highlight a set of 
criteria by which MVCC architectures are evaluated in the 
context of distributed systems and to correlate different 
classes of solutions with them. A generalized picture is 
presented in Table 1, which consolidates key emphases 
characteristic of theoretically oriented works on version 
garbage collection and lock-free structures [1, 8], systemic-
practical optimizations of memory and storage [3, 10], as 
well as hybrid blockchain-DBs and cloned control protocols.

Table 1. Key Design Emphases of MVCC Architectures in Distributed Systems [1–6, 8, 10]

Class of Solutions Main Focus Typical Trade-offs Practical Implications for 
Distributed Systems

Theoretical GC and Lock-free 
Structures

Guarantees on time/
memory, and progress

Complexity of implementation 
and debugging

Possibility of safe version 
scaling

Memory-optimized MVCC for 
Disk DBMS

Balance between 
memory/disk

Complex version placement 
policy

Different latency profiles on 
replicas

Disaggregated-memory MVCC Minimization of network 
load

Increased role of metadata 
format

Necessity of co-design with 
network architecture

Hybrid Blockchain-DBs Separation of DBMS and 
blockchain roles

Complexity of transaction and 
block reconciliation

Reduction of load on the 
consensus layer

Cloned Control (Primary–
Backup)

Limited replica lag Constraints on the form of 
parallelism

Requirement for joint design 
of MVCC and replication

Permissioned and Consortium 
Blockchains with MVCC

Parallelism and 
interoperability

Conflicts at hot state spots Necessity of designing the 
key space

As seen in Table 1, different directions of MVCC development 
accentuate various aspects of the same problem—managing 
a large number of versions under conditions of distribution 
and high competition. Works on version garbage collection 
and lock-free structures [1, 8] maximize progress and 
theoretical guarantees but are complex to implement; 
memory-optimized and disaggregated-memory approaches 
[3, 10] concentrate on the latency profile and storage cost; 
hybrid blockchain-DBs and cloned control [4–6] emphasize 
the necessity of joint design of MVCC with replication and 
consensus. Collectively, this reinforces the thesis that a 
distributed system designer must think of MVCC not as a 
library, but as the core of the data architecture.

Moving from classification to target scenarios, three types 
of systems appear most important: high-performance 
public or semi-public blockchains (including L2 solutions), 
permissioned consortia with cross-shard interaction, and 
large-scale agentic AI platforms. In each of these scenarios, 
requirements for MVCC differ noticeably, although the basic 
principles remain unified.

In high-performance blockchain systems, the key factor is the 
ability of the execution layer to support massive parallelism 
without imposing excessive limitations on the consensus 
level. Hybrid blockchain-DBs and blockchain database 
classifications show that in such systems, it is expedient 
to transfer the implementation of complex isolation logic 



Page | 19Universal Library of Innovative Research and Studies

State Management in Distributed Systems Using the Example of Multi-Version Concurrency 
Control (MVCC)

and multi-versioning to the database layer [4, 6], leaving 
consensus the role of a linear commit log. Ideas of memory-
bounded GC [1], memory-optimized storage [3], and cloned 
control protocols that guarantee backup nodes “keep up” 
with primary ones [5] are particularly valuable here.

For permissioned consortia, where the main bottleneck is 
cross-shard transaction conflicts, the design of the key space 
and versioning scheme proves critical. Works on MVCC 
interoperability parallelization [7] and scaling cross-sharding 
transactions [9] demonstrate that even with identical MVCC 
mechanisms (key versioning, optimistic version checking), 
changes in the logical data model—introduction of composite 
keys, virtual sub-brokers, splitting state into multiple logical 
segments—are capable of radically improving throughput 
and reducing the conflict rate.

Agentic AI platforms, although significantly different in 

domain, face similar problems: a multitude of independent 
agents simultaneously read and update shared knowledge 
stores, task queues, and interaction logs. For such systems, 
it is expedient to use ideas from lock-free structures 
and version GC [1, 8] to support long analytical queries 
and historical agent state scans without blocking short 
transactional updates. At the same time, a hybrid approach 
with a separation of responsibility between a transactional 
DB and an external event log (e.g., blockchain or log-oriented 
systems) can ensure both recoverability and auditability of 
interaction history [4, 6].

From the perspective of architectural solutions, it is useful 
to correlate the key requirements of these three scenarios 
with recommended MVCC usage patterns deriving from 
the reviewed works. A generalization of such alignment is 
presented in Table 2.

Table 2. Target Scenario Requirements and Corresponding MVCC Patterns (based on [1–10])

System Type Key State Management 
Requirements

Recommended MVCC Patterns and Techniques

High-Performance Public/
L2 Blockchains

Maximum parallelism, 
determinism, verifiability

Hybrid Blockchain-DB with “thick” MVCC layer; formally 
verified transaction core; memory-constrained GC; consistent 
cloned control

Permissioned Consortiums 
with Cross-Sharding

High share of cross-shard 
transactions, absence of key 
bottlenecks

MVCC cross-chain protocols; key space design (composite 
keys, sub-proxies); minimization of hot spot conflicts

Agent AI Platforms Massive agent parallelism, 
long analytical queries

Lock-free structures with MVCC; efficient version GC; 
separate storage of operational and historical data; possible 
integration with event log/blockchain

Disaggregated Memory 
Systems

High memory access latency, 
network scaling

Compact version metadata; aggregated traversal of version 
chains; joint design of data format and network architecture

Replicated Transactional 
Clusters

Limited replica lag, 
reproducibility of parallelism

Cloned control protocols; reconciliation of serialization 
granularity and version structure between primary and 
backups

Table 2 shows that the same basic MVCC ideas—multi-version 
snapshots, separation of reading from confirmed commit, 
version as a reconciliation element—manifest differently in 
distinct classes of systems. For blockchain systems, emphasis 
shifts to determinism and auditability: formal verification 
and integration with the consensus protocol are important 
[2, 4, 6]. For permissioned consortiums, data modeling and 
minimization of cross-shard transaction conflicts come to the 
fore [7, 9]. For agentic AI platforms, lock-free properties and 
the ability to serve long analytical queries without degrading 
short transactions are paramount [1, 3, 8]. In systems with 
disaggregated memory, the requirement to minimize the 
number of network requests per version unit is added [10].

MVCC not only fits into the specialization of an engineer 
working with large-scale distributed systems, blockchain 
platforms, and agentic AI architectures but effectively 
becomes the central mechanism ensuring their scalability, 
consistency, and auditability. The results of the analytical 

research form a conceptual framework upon which high-
performance blockchain execution layers and scalable 
platforms of interacting AI agents can be designed and 
developed, and also set the agenda for future experimental 
and applied works in this field.

Conclusion
The conducted research confirmed that MVCC in modern 
distributed systems should be treated as a key state 
management layer, not an auxiliary transaction isolation 
mechanism. Comparative analysis of theoretical and 
systems-oriented approaches showed that multi-version 
garbage collection can be organized with simultaneous 
time and space constraints, integrated with lock-free data 
structures, and adapted to various storage profiles, including 
in-memory, disk, and disaggregated memory architectures. 
This allows scaling the number of versions without an 
exponential increase in overhead costs and provides a basis 
for safe parallelism.



Page | 20Universal Library of Innovative Research and Studies

State Management in Distributed Systems Using the Example of Multi-Version Concurrency 
Control (MVCC)

The investigation of MVCC integration with protocols 
for consensus, replication, and inter-shard interaction 
demonstrated that the best results are achieved in 
architectures where complex multi-version and transaction 
logic is implemented at the level of a database or specialized 
transactional core, while the blockchain and other log 
subsystems are responsible for the linear order of commits 
and cryptographic auditability. Cloned control protocols, 
hybrid blockchain-DBMSs, and MVCC-oriented cross-
sharding schemes show that the coordinated design of the 
multi-version layer, data model, and replication algorithms 
allows simultaneously limiting replica lag, reducing conflict 
frequency, and increasing the system’s effective throughput.

The formulated architectural patterns of state management—
”multi-version snapshot over consensus”, “version lists with 
efficient GC and lock-free access”, “cloned control with limited 
lag”, and “versions as a unit of cross-chain interoperability”—
set a practical framework for designing high-performance 
L2 blockchains, permissioned consortiums, and agentic AI 
platforms. It is shown that the correct choice of key space, 
versioning scheme, and metadata format is as important as 
the choice of a specific consensus algorithm. A limitation of 
the work is the analytical nature of the conclusions without 
independent experimental measurements on industrial 
infrastructure. Nevertheless, the comprehensive comparison 
of theoretical and applied studies allowed for forming 
a holistic model of using MVCC as a state management 
core in distributed systems and outlining directions for 
further work: experimental validation of the proposed 
patterns on real loads, deepened formalization of interfaces 
between verifiable MVCC cores and high-level languages 
of smart contracts and agents, as well as the adaptation of 
multi-version approaches to new hardware and network 
architectures.

REFERENCES
Ben-David, N., Blelloch, G. E., Fatourou, P., Ruppert, 1.	
E., Sun, Y., & Wei, Y. (2021). Space and time bounded 
multiversion garbage collection. arXiv. https://arxiv.
org/abs/2108.02775

Chang, Y.-S., Jung, R., Sharma, U., Tassarotti, J., Kaashoek, 2.	
M. F., & Zeldovich, N. (2023, July 10–12). Verifying vMVCC, 
a high-performance transaction library using multi-
version concurrency control. Proceedings of the 17th 
USENIX Symposium on Operating Systems Design and 
Implementation (OSDI 23). USENIX Association. https://
www.usenix.org/conference/osdi23/presentation/
chan

Freitag, M., Kemper, A., & Neumann, T. (2022). Memory-3.	
optimized multi-version concurrency control for 
disk-based database systems. Proceedings of the 
VLDB Endowment, 15(11), 2797-2810. https://doi.
org/10.14778/3551793.3551832

Ge, Z., Loghin, D., Ooi, B. C., Ruan, P., & Wang, T. (2022). Hybrid 4.	
blockchain database systems: Design and performance. 
Proceedings of the VLDB Endowment, 15(5), 1092-1104. 
https://doi.org/10.14778/3510397.3510406

Helt, J., Sharma, A., Abadi, D. J., Lloyd, W., & Faleiro, J. 5.	
M. (2022). C5: Cloned concurrency control that always 
keeps up. Proceedings of the VLDB Endowment, 16(1). 
1-14. https://doi.org/10.14778/3561261.3561262

Kalajdjieski, J., Raikwar, M., Arsov, N., Velinov, G., & 6.	
Gligoroski, D. (2023). Databases fit for blockchain 
technology: A complete overview. Blockchain: 
Research and Applications, 4(1), 100116. https://doi.
org/10.1016/j.bcra.2022.100116

Lin, W., Qu, Q., Ning, L., Fan, J., & Jiang, Q. (2021). A 7.	
MVCC approach to parallelizing interoperability of 
consortium blockchain. In K.-M. Chao, M. A. Jabbar, & 
H. Zhang (Eds.), Parallel and distributed computing, 
applications and technologies: 22nd International 
Conference, PDCAT 2021, Guangzhou, China, December 
17–19, 2021, Proceedings, 273–285. Springer. https://
doi.org/10.1007/978-3-030-96772-7_25

Sheffi, G., Ramalhete, P., & Petrank, E. (2022). EEMARQ: 8.	
Efficient lock-free range queries with memory 
reclamation. arXiv preprint arXiv:2210.17086. https://
doi.org/10.48550/arXiv.2210.17086

Yang, L., Dong, X., Wan, Z., Lu, D., Zhang, Y., & Shen, 9.	
Y. (2025). HiCoCS: High concurrency cross-sharding 
on permissioned blockchains. arXiv preprint 
arXiv:2501.04265. https://doi.org/10.48550/
arXiv.2501.04265

Zhang, M., Hua, Y., & Yang, Z. (2024, July 10–12). Motor: 10.	
Enabling multi-versioning for distributed transactions 
on disaggregated memory. Proceedings of the 18th 
USENIX Symposium on Operating Systems Design and 
Implementation (OSDI 24). USENIX Association. https://
www.usenix.org/conference/osdi24/presentation/
zhang-ming

Copyright: © 2026 The Author(s). This is an open access article distributed under the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


