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The article examines emerging trends in the application of machine learning methods for detecting network anomalies 
in cloud platforms, taking into account the influence of virtualization and the dynamics of infrastructure. The study is 
based on a systematization of publications addressing traffic and resource-metric monitoring, labeling scarcity, multilayer 
encapsulation, and the limited observability of distributed systems. The paper compares ensemble and hybrid architectures, 
convolutional and recurrent models, unsupervised autoencoders, as well as graph-based and contrastive approaches, 
enabling an assessment of how architectural choices affect anomaly-recognition robustness under distribution shifts and 
changes in packet structure. Special attention is given to the roles of temporal dependencies, node-interaction topology, 
and the effects of virtual-machine migration, which introduce distortions in input data and create opaque zones within 
virtual networks. The findings show that shifting from models relying on local features to spatiotemporal and graph-based 
architectures improves monitoring adaptability to cloud-infrastructure variability and partial labeling, although this 
transition is accompanied by increased model complexity and higher requirements for representation quality. The article 
may be of interest to professionals working in cloud-platform operations, network security, and reliability engineering for 
distributed systems.
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Abstract

Introduction
The growth of scalable cloud platforms and virtualized 
network environments enhances the dependency of services 
on infrastructure stability, thereby increasing the importance 
of timely anomaly detection. Traditional monitoring 
mechanisms capture violations but adapt poorly to the 
dynamics of virtual networks, where configurations change 
rapidly and traffic undergoes multilayer encapsulation.

Machine learning methods expand monitoring capabilities; 
however, classical rules and signatures remain vulnerable 
to encryption and traffic variability. Deep models improve 
accuracy but face challenges regarding labeling scarcity and 
incomplete data observability [4]. Graph and contrastive 
approaches account for structure and temporal dynamics, 
yet their behavior under virtualization conditions remains 
insufficiently studied.

It remains unclear how distinct architectures, ranging 
from CNNs to hybrid models with GraphGRU, respond to 
encapsulation, virtual machine migration, and high flow 
variability. A holistic concept unifying architectural solutions 
with the specific characteristics of cloud data is currently 

lacking, as existing research covers only isolated elements of 
the problem.

The objective of this study is to systematize trends in the 
application of machine learning methods for detecting 
network anomalies in cloud platforms by comparing 
architectural approaches, experimental results, and model 
limitations under virtualization conditions.

The hypothesis posits that the transition from classical 
machine learning methods to spatiotemporal and contrastive 
models increases the resilience of monitoring systems to 
cloud infrastructure variability, reduces sensitivity to the 
lack of labeling, and ensures higher accuracy when working 
with dynamic network flows.

The scientific contribution consists of formulating an 
analytical framework that reveals how architectural 
characteristics of models—such as the use of graph 
structures, contrastive learning, reconstruction, or hybrid 
CNN-LSTM networks—influence the ability of systems to 
correctly identify anomalies in real-world cloud conditions. 
The work generalizes the differences between approaches, 
identifies the causes of reduced accuracy in virtualized 
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networks, and demonstrates which architectural solutions 
allow for the compensation of these effects.

The scope of the study is defined by the task of detecting 
network anomalies in cloud environments. Issues regarding 
cryptographic protection, vulnerability management, 
application-level intrusion prevention, and network protocol 
optimization remain outside the framework of this analysis, 
as they touch upon adjacent fields but do not constitute the 
immediate subject of this research.

Materials and Methods
The study is based on scientific publications from 2022–
2025 dedicated to monitoring network and resource 
anomalies in cloud environments and the application of 
machine learning to the analysis of traffic, time series, and 
topological dependencies. Works addressing the problems of 
labeling deficits, the influence of virtualization on network 
packet structure, the necessity of accounting for cloud 
system topology, and the development of reconstruction 
and contrastive learning approaches were utilized. These 
materials form the theoretical basis necessary for analyzing 
trends in the application of ML methods for anomaly 
monitoring on cloud platforms.

Specifics of analyzing unlabeled time series in cloud 
systems are examined in the study by Al-Ghuwairi et al. 
[1]. The problematic aspects of ensuring data integrity and 
constructing ML models for anomaly detection are outlined 
in the work of Devineni et al. [2]. Adaptation of models to 
changing network traffic and incremental learning on edge 
nodes are presented by Glavan & Croitoru [3]. Scalability 
and limited observability of industrial clouds are analyzed 
in the research by Islam et al. [4]. The use of knowledge 
graph embedding for anomaly detection is described by 
Mitropoulou et al. [5]. Methods for unlabeled detection of 
network packets using autoencoders are revealed in the 
work of Park et al. [6]. Architectures for ML monitoring of 

network anomalies are systematized by Schummer et al. [7]. 
The capabilities of ensembles for multiclass classification 
of cloud anomalies are considered by Shahzad et al. [8]. 
The influence of virtualization, encapsulation, and virtual 
machine migration on classification accuracy is analyzed 
by Spiekermann et al. [9]. Graph and contrastive models for 
integrating the topology and temporal dynamics of cloud 
systems are detailed in the study by Zhang et al. [10].

The methodological basis of the research included content 
analysis of scientific publications aimed at identifying key 
approaches to anomaly detection in cloud platforms and 
classifying the applied ML architectures. A comparative 
analysis of models—reconstruction, classification, graph-
based, and contrastive—was applied to reveal differences in 
their resilience to virtualization artifacts, labeling deficits, 
and traffic variability. Functional-structural modeling was 
used, focusing on reconstructing the operational logic of 
various architectures, including autoencoders, convolutional 
networks, and hybrid graph models.

Results
The increasing complexity of cloud platforms intensifies 
the requirements for anomaly detection models. They must 
react correctly to variable network conditions, high loads, 
virtualization, and the dynamics of internodal connections. 
During the source analysis, the primary behavioral features of 
modern machine learning models were identified, reflecting 
differences in architectures, task types, and the nature of 
network traffic.

The results of the study by Park et al. [6] demonstrate that 
unsupervised methods maintain stability during changes in 
network structure but are sensitive to disruptions in baseline 
traffic distributions. This highlights the differences between 
models dependent on labeling and methods relying on data 
properties. Summary indicators are presented in Table 1.

Table 1. Comparison of anomaly detection model accuracy (Compiled by the author based on the sources: [8, 9, 10])

Model / Source Task Type Metric Value
Ensemble (SGD + LR + Ridge) – CAD Binary anomaly detection Accuracy 97.06%
CNN-LSTM CAD model Multiclass detection Accuracy 99.91%
CNN-NIDS Classic network flows Accuracy 98.7%
CNN-NIDS VXLAN/GENEVE traffic Accuracy Significant decrease
GCAD Performance anomaly detection Precision 0.915
GCAD Performance anomaly detection Fullness 0.512
GCAD Performance anomaly detection F1 0.932

Note: The “Task Type” column denotes the type of task for which the model was trained, including binary classification, multiclass 
recognition, or flow traffic analysis. The “Metric” column reflects the quality indicator used, such as accuracy, precision, recall, 
or the F1-metric. The “Value” column contains the final value of the corresponding metric as cited in the original source.

Continuing the examination of algorithm performance 
patterns in cloud environments, it is important to highlight 
how model architecture determines its reaction to the 
network and computational features of the platform. The 
study by Al-Ghuwairi et al. [1] shows that models focused 
on temporal dependencies in data streams form more 

robust features under load changes, enhancing the ability 
to detect rare and transient states. The work of Glavan and 
Croitoru [3] demonstrates that sequential learning methods 
face changes in traffic structure as data arrives, and the 
architecture plays a key role in such conditions. Models that 
do not account for the context of packet appearance quickly 
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lose sensitivity. The research by Mitropoulou et al. [5] 
emphasizes the importance of structural links between 
network objects, making topological architectures 
more resilient to the increasing complexity of the cloud 
environment. Furthermore, Schummer et al. [7] show 

that architectures built around the modular processing 
of network features adapt better to changes in the 
component composition of traffic. To systematize the 
main trends, summary characteristics of architectures 
are provided in Table 2.

Table 2. Architectural trends in ML models for anomaly monitoring (Compiled by the author based on the sources: [3, 4, 9])

Architecture Key Properties
Ensemble + CNN-LSTM Accuracy increase due to hybrid ML schemes
CNN Accuracy degradation caused by encapsulation (VXLAN/GENEVE)
GraphGRU + contrastive learning Integration of topology + temporal dynamics improves accuracy

Table 2 indicates that architectural differences determine the 
mechanism for processing network features and the nature 
of the model’s reaction to structural data changes. The study 
by Al-Ghuwairi et al. [1] demonstrates the advantages of 
temporal models in environments with high load variability. 
Such a structure makes the algorithm less dependent on 
the network interaction graph but more resilient to the 
dynamics of incoming packets. The results of Glavan and 
Croitoru [3] confirm that architectures not utilizing context 
and connections between events tend to decrease in accuracy 
during the transformation of network structures.

Thus, architectures incorporating topological representation 
allow for the detection of interconnected anomalies arising on 
multiple nodes simultaneously. In cloud platform conditions, 
where routes, loads, and connections change dynamically, 
such differences become key for the stable operation of 
monitoring systems.

Discussion
The development of approaches to anomaly monitoring in 
cloud environments demonstrates a steady transition from 
methods based on local features to architectures capable 
of capturing structural and temporal dependencies. The 
study by Al-Ghuwairi et al. [1] shows that classical ML 
models applied to a stream of metrics detect anomalies with 
high speed, but their resilience is limited due to the failure 
to account for the topology and dynamics of distributed 
systems. Such models work well on homogeneous network 
data; however, they are sensitive to the variability of cloud 
loads, flexible routing, and virtualization effects.

Additional limitations are noted in the work of Glavan et 
al. [3], which emphasizes that even incremental learning 
schemes are insufficiently adaptive when rare or short-
term anomalies appear. Under conditions of high traffic flow 
variability, sequential architectures struggle to correctly 
interpret the interconnections between cloud nodes. Similar 
patterns are identified in the research by Shahzad et al. [8], 
where CNN and LSTM models demonstrate high accuracy 
on network datasets but lose effectiveness with increasing 
traffic structure complexity and the appearance of tunneling. 
This indicates a need for architectures capable of modeling 
temporal dynamics and interaction structures.

In response to these limitations, the scientific literature 
is increasingly focusing on methods capable of describing 
cloud environment topology. In the study by Mitropoulou 
et al. [5], it is noted that structural features improve model 
resilience when system component configurations change. 
A similar emphasis is present in Schummer et al. [7], where 
it was found that anomalies propagate through chains of 
node dependencies, meaning spatial relationships must be 
integrated into the learning process.

It is within this logic that the GCAD architecture, presented 
in the study by Zhang et al. [10], is developed. It is based on 
combining graph processing and a representation matching 
mechanism, which forms robust feature vectors even in the 
absence of labeling. As seen in Figure 1, modern approaches 
rely on the spatiotemporal integration of resources and 
topology.

Figure 1. GCAD Architecture (Source: [10])
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Virtual network environments create a qualitatively different 
context for anomaly detection compared to classical 
infrastructures. The main difficulty lies in the fact that traffic 
in the cloud ceases to be homogeneous. It is encapsulated 
in tunnels, reassembled, passes through service layers of 
virtualization, and changes structure depending on load 
or computing resource migration. These changes form 
distortions that completely violate the habitual assumptions 
of ML models regarding the form and distribution of features. 
Consequently, even robust architectures encounter situations 
where the system no longer provides data in a format similar 
to the training set.

VXLAN and GENEVE encapsulation exacerbates this problem 
by adding additional header layers and hiding part of the 
semantics of network behavior. Virtual headers absorb 
information about flow direction and interaction structure. 
The study by Spiekermann et al. [9] demonstrates that the 
reconfiguration of network paths and changes in packet 
structure lead to a significant decrease in the accuracy of 
models relying on packet sequence analysis.

Another source of limitation is related to temporal dynamics. 
Cloud systems generate irregular load fluctuations, short-
term peaks, and periods of asymmetric resource distribution. 
These fluctuations are not fully-fledged anomalies, but their 
form is similar. The study by Al-Ghuwairi et al. [1] emphasizes 
that such states blur the boundaries between normality and 
violation.

Topology also acts as a critical factor. The structure of the 
cloud environment is dynamic. Nodes interact through 
virtual channels, processes migrate between servers, and 
connections change direction. In classical approaches, this 
dynamics is not reflected, as the model works only with local 
metrics. In the study by Mitropoulou et al. [5], it is noted that 
ignoring structural dependencies leads to a loss of context 
for network events and reduces the ability to capture system 
violations. Consequently, interpreting network behavior 
requires analyzing interaction schemes between nodes 
rather than individual packets. The situation is complicated 
by the fact that part of the network activity is hidden within 
service virtualization protocols. The research by Schummer 
et al. [7] shows that these hidden layers form “opaque zones” 
where traditional methods cannot observe state transitions. 
Therefore, the model works with a truncated picture of 
events and loses the ability to correctly correlate metrics.

These limitations explain the interest in architectures that 
account for the structure and dynamics of the environment. 
The study by Zhang et al. [10] proposes an approach that 
processes network dependencies as a graph structure and 
compares sequence representations through a contrastive 
mechanism. This transition is driven by the fact that virtual 
networks require the analysis of interconnections, not just 
the features of individual flows. Thus, the promise of graph 
models reflects a fundamental shift in understanding the 
nature of cloud anomalies.

Conclusion
The conducted analysis revealed that the efficacy of network 
anomaly detection in cloud platforms is determined by 
the choice of metrics and data, and primarily by model 
architecture. Classical ML approaches and ensembles 
maintain high accuracy on stable and well-described 
traffic sets; however, their resilience drops sharply with 
the appearance of virtualization, tunneling, and dynamic 
routing. Models relying solely on local features are bound to 
assumptions about packet structure that are systematically 
violated in a cloud environment.

Virtual networks with VXLAN and GENEVE encapsulation, 
virtual machine migration, and variable node topology form 
distribution shifts and zones of incomplete observability. 
Under these conditions, architectures focused only on 
packet sequences or static features lose the ability to reliably 
separate normality from anomalies, especially with short-
term or weakly expressed violations.

Hybrid, graph-based, and contrastive models demonstrate 
higher resilience to cloud environment dynamics by 
accounting for topology, temporal dependencies, and the 
ability to learn with limited labeling. The inclusion of structural 
links between nodes and mechanisms for forming robust 
representations allows for better handling of distributed 
anomalies and complex load patterns. At the same time, 
limitations remain related to sensitivity to weak anomalies, 
architectural complexity, and high requirements for the 
quality of input representations. For sustainable progress 
in the field of anomaly monitoring, general benchmarks 
emulating VXLAN/GENEVE scenes and VM migrations are 
necessary, as well as jointly supported repositories with open 
datasets and method code (benchmark + open artifacts).

The practical conclusion is that the design of monitoring 
systems for cloud platforms must rely on architectures 
that explicitly account for virtualization, multilayer traffic 
structure, interaction topology, and temporal dynamics. 
Promising directions for development include the creation 
of unified benchmarks for virtual networks, the integration 
of graph and temporal modules, and the development of 
unsupervised methods and those using partially labeled data 
under conditions of incomplete observability. Such a shift in 
focus from local features to spatiotemporal and structural 
analysis defines the next phase in the evolution of ML 
approaches to anomaly monitoring in cloud environments.
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