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The article examines emerging trends in the application of machine learning methods for detecting network anomalies
in cloud platforms, taking into account the influence of virtualization and the dynamics of infrastructure. The study is
based on a systematization of publications addressing traffic and resource-metric monitoring, labeling scarcity, multilayer
encapsulation, and the limited observability of distributed systems. The paper compares ensemble and hybrid architectures,
convolutional and recurrent models, unsupervised autoencoders, as well as graph-based and contrastive approaches,
enabling an assessment of how architectural choices affect anomaly-recognition robustness under distribution shifts and
changes in packet structure. Special attention is given to the roles of temporal dependencies, node-interaction topology,
and the effects of virtual-machine migration, which introduce distortions in input data and create opaque zones within
virtual networks. The findings show that shifting from models relying on local features to spatiotemporal and graph-based
architectures improves monitoring adaptability to cloud-infrastructure variability and partial labeling, although this
transition is accompanied by increased model complexity and higher requirements for representation quality. The article
may be of interest to professionals working in cloud-platform operations, network security, and reliability engineering for
distributed systems.
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INTRODUCTION

The growth of scalable cloud platforms and virtualized
network environments enhances the dependency of services
on infrastructure stability, thereby increasing the importance
of timely anomaly detection. Traditional monitoring
mechanisms capture violations but adapt poorly to the
dynamics of virtual networks, where configurations change
rapidly and traffic undergoes multilayer encapsulation.

Machine learning methods expand monitoring capabilities;
however, classical rules and signatures remain vulnerable
to encryption and traffic variability. Deep models improve
accuracy but face challenges regarding labeling scarcity and
incomplete data observability [4]. Graph and contrastive
approaches account for structure and temporal dynamics,
yet their behavior under virtualization conditions remains
insufficiently studied.

It remains unclear how distinct architectures, ranging
from CNNs to hybrid models with GraphGRU, respond to
encapsulation, virtual machine migration, and high flow
variability. A holistic concept unifying architectural solutions
with the specific characteristics of cloud data is currently

lacking, as existing research covers only isolated elements of
the problem.

The objective of this study is to systematize trends in the
application of machine learning methods for detecting
network anomalies in cloud platforms by comparing
architectural approaches, experimental results, and model
limitations under virtualization conditions.

The hypothesis posits that the transition from classical
machine learning methods to spatiotemporal and contrastive
models increases the resilience of monitoring systems to
cloud infrastructure variability, reduces sensitivity to the
lack of labeling, and ensures higher accuracy when working
with dynamic network flows.

The scientific contribution consists of formulating an
analytical framework that reveals how architectural
characteristics of models—such as the use of graph
structures, contrastive learning, reconstruction, or hybrid
CNN-LSTM networks—influence the ability of systems to
correctly identify anomalies in real-world cloud conditions.
The work generalizes the differences between approaches,
identifies the causes of reduced accuracy in virtualized
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networks, and demonstrates which architectural solutions
allow for the compensation of these effects.

The scope of the study is defined by the task of detecting
network anomalies in cloud environments. Issues regarding
cryptographic  protection, vulnerability management,
application-level intrusion prevention, and network protocol
optimization remain outside the framework of this analysis,
as they touch upon adjacent fields but do not constitute the
immediate subject of this research.

MATERIALS AND METHODS

The study is based on scientific publications from 2022-
2025 dedicated to monitoring network and resource
anomalies in cloud environments and the application of
machine learning to the analysis of traffic, time series, and
topological dependencies. Works addressing the problems of
labeling deficits, the influence of virtualization on network
packet structure, the necessity of accounting for cloud
system topology, and the development of reconstruction
and contrastive learning approaches were utilized. These
materials form the theoretical basis necessary for analyzing
trends in the application of ML methods for anomaly
monitoring on cloud platforms.

Specifics of analyzing unlabeled time series in cloud
systems are examined in the study by Al-Ghuwairi et al.
[1]. The problematic aspects of ensuring data integrity and
constructing ML models for anomaly detection are outlined
in the work of Devineni et al. [2]. Adaptation of models to
changing network traffic and incremental learning on edge
nodes are presented by Glavan & Croitoru [3]. Scalability
and limited observability of industrial clouds are analyzed
in the research by Islam et al. [4]. The use of knowledge
graph embedding for anomaly detection is described by
Mitropoulou et al. [5]. Methods for unlabeled detection of
network packets using autoencoders are revealed in the
work of Park et al. [6]. Architectures for ML monitoring of

network anomalies are systematized by Schummer et al. [7].
The capabilities of ensembles for multiclass classification
of cloud anomalies are considered by Shahzad et al. [8].
The influence of virtualization, encapsulation, and virtual
machine migration on classification accuracy is analyzed
by Spiekermann et al. [9]. Graph and contrastive models for
integrating the topology and temporal dynamics of cloud
systems are detailed in the study by Zhang et al. [10].

The methodological basis of the research included content
analysis of scientific publications aimed at identifying key
approaches to anomaly detection in cloud platforms and
classifying the applied ML architectures. A comparative
analysis of models—reconstruction, classification, graph-
based, and contrastive—was applied to reveal differences in
their resilience to virtualization artifacts, labeling deficits,
and traffic variability. Functional-structural modeling was
used, focusing on reconstructing the operational logic of
various architectures, including autoencoders, convolutional
networks, and hybrid graph models.

RESULTS

The increasing complexity of cloud platforms intensifies
the requirements for anomaly detection models. They must
react correctly to variable network conditions, high loads,
virtualization, and the dynamics of internodal connections.
During the source analysis, the primary behavioral features of
modern machine learning models were identified, reflecting
differences in architectures, task types, and the nature of
network traffic.

The results of the study by Park et al. [6] demonstrate that
unsupervised methods maintain stability during changes in
network structure but are sensitive to disruptions in baseline
traffic distributions. This highlights the differences between
models dependent on labeling and methods relying on data
properties. Summary indicators are presented in Table 1.

Table 1. Comparison of anomaly detection model accuracy (Compiled by the author based on the sources: [8, 9, 10])

Model / Source Task Type Metric Value

Ensemble (SGD + LR + Ridge) - CAD Binary anomaly detection Accuracy 97.06%

CNN-LSTM CAD model Multiclass detection Accuracy 99.91%

CNN-NIDS Classic network flows Accuracy 98.7%

CNN-NIDS VXLAN/GENEVE traffic Accuracy Significant decrease
GCAD Performance anomaly detection Precision 0.915

GCAD Performance anomaly detection Fullness 0.512

GCAD Performance anomaly detection F1 0.932

Note: The “Task Type” column denotes the type of task for which the model was trained, including binary classification, multiclass
recognition, or flow traffic analysis. The “Metric” column reflects the quality indicator used, such as accuracy, precision, recall,
or the F1-metric. The “Value” column contains the final value of the corresponding metric as cited in the original source.

Continuing the examination of algorithm performance
patterns in cloud environments, it is important to highlight
how model architecture determines its reaction to the
network and computational features of the platform. The
study by Al-Ghuwairi et al. [1] shows that models focused
on temporal dependencies in data streams form more

robust features under load changes, enhancing the ability
to detect rare and transient states. The work of Glavan and
Croitoru [3] demonstrates that sequential learning methods
face changes in traffic structure as data arrives, and the
architecture plays a key role in such conditions. Models that
do not account for the context of packet appearance quickly
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lose sensitivity. The research by Mitropoulou et al. [5]
emphasizes the importance of structural links between
network objects, making topological architectures
more resilient to the increasing complexity of the cloud
environment. Furthermore, Schummer et al. [7] show

that architectures built around the modular processing
of network features adapt better to changes in the
component composition of traffic. To systematize the
main trends, summary characteristics of architectures
are provided in Table 2.

Table 2. Architectural trends in ML models for anomaly monitoring (Compiled by the author based on the sources: [3, 4, 9])

Architecture Key Properties

Ensemble + CNN-LSTM Accuracy increase due to hybrid ML schemes

CNN Accuracy degradation caused by encapsulation (VXLAN/GENEVE)
GraphGRU + contrastive learning Integration of topology + temporal dynamics improves accuracy

Table 2 indicates thatarchitectural differences determine the
mechanism for processing network features and the nature
of the model’s reaction to structural data changes. The study
by Al-Ghuwairi et al. [1] demonstrates the advantages of
temporal models in environments with high load variability.
Such a structure makes the algorithm less dependent on
the network interaction graph but more resilient to the
dynamics of incoming packets. The results of Glavan and
Croitoru [3] confirm that architectures not utilizing context
and connections between events tend to decrease in accuracy
during the transformation of network structures.

Thus, architectures incorporating topological representation
allow for the detection of interconnected anomalies arising on
multiple nodes simultaneously. In cloud platform conditions,
where routes, loads, and connections change dynamically,
such differences become key for the stable operation of
monitoring systems.

DISCUSSION

The development of approaches to anomaly monitoring in
cloud environments demonstrates a steady transition from
methods based on local features to architectures capable
of capturing structural and temporal dependencies. The
study by Al-Ghuwairi et al. [1] shows that classical ML
models applied to a stream of metrics detect anomalies with
high speed, but their resilience is limited due to the failure
to account for the topology and dynamics of distributed
systems. Such models work well on homogeneous network
data; however, they are sensitive to the variability of cloud
loads, flexible routing, and virtualization effects.
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Additional limitations are noted in the work of Glavan et
al. [3], which emphasizes that even incremental learning
schemes are insufficiently adaptive when rare or short-
term anomalies appear. Under conditions of high traffic flow
variability, sequential architectures struggle to correctly
interpret the interconnections between cloud nodes. Similar
patterns are identified in the research by Shahzad et al. [8],
where CNN and LSTM models demonstrate high accuracy
on network datasets but lose effectiveness with increasing
traffic structure complexity and the appearance of tunneling.
This indicates a need for architectures capable of modeling
temporal dynamics and interaction structures.

In response to these limitations, the scientific literature
is increasingly focusing on methods capable of describing
cloud environment topology. In the study by Mitropoulou
et al. [5], it is noted that structural features improve model
resilience when system component configurations change.
A similar emphasis is present in Schummer et al. [7], where
it was found that anomalies propagate through chains of
node dependencies, meaning spatial relationships must be
integrated into the learning process.

It is within this logic that the GCAD architecture, presented
in the study by Zhang et al. [10], is developed. It is based on
combining graph processing and a representation matching
mechanism, which forms robust feature vectors even in the
absence of labeling. As seen in Figure 1, modern approaches
rely on the spatiotemporal integration of resources and
topology
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Figure 1. GCAD Architecture (Source: [10])
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Virtual network environments create a qualitatively different
context for anomaly detection compared to -classical
infrastructures. The main difficulty lies in the fact that traffic
in the cloud ceases to be homogeneous. It is encapsulated
in tunnels, reassembled, passes through service layers of
virtualization, and changes structure depending on load
or computing resource migration. These changes form
distortions that completely violate the habitual assumptions
of ML models regarding the form and distribution of features.
Consequently, even robust architectures encounter situations
where the system no longer provides data in a format similar
to the training set.

VXLAN and GENEVE encapsulation exacerbates this problem
by adding additional header layers and hiding part of the
semantics of network behavior. Virtual headers absorb
information about flow direction and interaction structure.
The study by Spiekermann et al. [9] demonstrates that the
reconfiguration of network paths and changes in packet
structure lead to a significant decrease in the accuracy of
models relying on packet sequence analysis.

Another source of limitation is related to temporal dynamics.
Cloud systems generate irregular load fluctuations, short-
term peaks, and periods of asymmetric resource distribution.
These fluctuations are not fully-fledged anomalies, but their
form is similar. The study by Al-Ghuwairi etal. [1] emphasizes
that such states blur the boundaries between normality and
violation.

Topology also acts as a critical factor. The structure of the
cloud environment is dynamic. Nodes interact through
virtual channels, processes migrate between servers, and
connections change direction. In classical approaches, this
dynamics is not reflected, as the model works only with local
metrics. In the study by Mitropoulou et al. [5], it is noted that
ignoring structural dependencies leads to a loss of context
for network events and reduces the ability to capture system
violations. Consequently, interpreting network behavior
requires analyzing interaction schemes between nodes
rather than individual packets. The situation is complicated
by the fact that part of the network activity is hidden within
service virtualization protocols. The research by Schummer
etal. [7] shows that these hidden layers form “opaque zones”
where traditional methods cannot observe state transitions.
Therefore, the model works with a truncated picture of
events and loses the ability to correctly correlate metrics.

These limitations explain the interest in architectures that
account for the structure and dynamics of the environment.
The study by Zhang et al. [10] proposes an approach that
processes network dependencies as a graph structure and
compares sequence representations through a contrastive
mechanism. This transition is driven by the fact that virtual
networks require the analysis of interconnections, not just
the features of individual flows. Thus, the promise of graph
models reflects a fundamental shift in understanding the
nature of cloud anomalies.

CONCLUSION

The conducted analysis revealed that the efficacy of network
anomaly detection in cloud platforms is determined by
the choice of metrics and data, and primarily by model
architecture. Classical ML approaches and ensembles
maintain high accuracy on stable and well-described
traffic sets; however, their resilience drops sharply with
the appearance of virtualization, tunneling, and dynamic
routing. Models relying solely on local features are bound to
assumptions about packet structure that are systematically
violated in a cloud environment.

Virtual networks with VXLAN and GENEVE encapsulation,
virtual machine migration, and variable node topology form
distribution shifts and zones of incomplete observability.
Under these conditions, architectures focused only on
packet sequences or static features lose the ability to reliably
separate normality from anomalies, especially with short-
term or weakly expressed violations.

Hybrid, graph-based, and contrastive models demonstrate
higher resilience to cloud environment dynamics by
accounting for topology, temporal dependencies, and the
ability to learn with limited labeling. The inclusion of structural
links between nodes and mechanisms for forming robust
representations allows for better handling of distributed
anomalies and complex load patterns. At the same time,
limitations remain related to sensitivity to weak anomalies,
architectural complexity, and high requirements for the
quality of input representations. For sustainable progress
in the field of anomaly monitoring, general benchmarks
emulating VXLAN/GENEVE scenes and VM migrations are
necessary, as well as jointly supported repositories with open
datasets and method code (benchmark + open artifacts).

The practical conclusion is that the design of monitoring
systems for cloud platforms must rely on architectures
that explicitly account for virtualization, multilayer traffic
structure, interaction topology, and temporal dynamics.
Promising directions for development include the creation
of unified benchmarks for virtual networks, the integration
of graph and temporal modules, and the development of
unsupervised methods and those using partially labeled data
under conditions of incomplete observability. Such a shift in
focus from local features to spatiotemporal and structural
analysis defines the next phase in the evolution of ML
approaches to anomaly monitoring in cloud environments.
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