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The article presents a comprehensive analysis of methods and tools for ensuring observability in distributed software systems, 
including high-performance computing environments, container-based platforms, and microservice architectures. The 
study is based on comparing structural properties of telemetry, data-collection models, and mechanisms for reconstructing 
causal relationships as described in contemporary scientific publications. It examines differences in execution-context 
formation, measurement accuracy, and metric reproducibility across environments with varying workload dynamics. 
Special attention is given to the impact of architectural constraints on resource attribution, trace-data interpretation, 
and the stability of analytical outcomes. The practical consequences for engineers are outlined, including the need to 
standardize context propagation in HPC, develop valid energy-attribution models in Kubernetes, implement consistent 
tracing mechanisms in microservices, and apply telemetry filtering in causal-analysis workflows. The study demonstrates 
that the key condition for mature observability is not the volume of collected data but the coherence and reproducibility 
of measurement pipelines, which enable a holistic understanding of distributed-system behavior. The article may be useful 
for observability-engineering specialists, distributed-application developers, system architects, and researchers studying 
telemetry-interpretation methods in complex computational environments.
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Abstract

Introduction
The observability of distributed software systems is becoming 
a critical condition for their stability, manageability, and 
predictability. The growing complexity of architectures, 
the transition to microservices, containerization, and 
cloud orchestrators has led to a situation where traditional 
monitoring mechanisms no longer provide sufficient depth 
of understanding regarding ongoing processes [3]. Whereas 
engineers were previously limited to reviewing metrics 
and logs of individual services, the system now interacts 
across dozens of network nodes, generates a large number 
of asynchronous operations, and depends on external 
platforms, making its behavior less transparent.

The transition to modern observability models has emerged 
as a response to the need to visualize the symptoms and 
causes of deviations. Unlike classical monitoring, which 
focuses on fixed indicators, observability integrates metrics, 
logs, and traces into a single analysis loop [7]. This allows 
for the restoration of execution context, tracking of request 
paths across multiple services, and the identification of 
connections between events that are inaccessible during 

isolated observation. For distributed systems, such integrity 
is particularly important, as failures often arise not within a 
specific component, but at the intersection of interactions.

However, existing approaches to observability remain 
fragmented. Some solutions focus on collecting metrics, 
others on tracing, and still others on log analysis. Many teams 
implement tools in a piecemeal fashion without a general 
architectural model, which leads to data disjointedness and 
complicates diagnostics [2]. There is a need for a systemic 
understanding of how various observability methods 
and tools function jointly, what tasks they solve, and what 
limitations they possess during operation in real distributed 
environments. Despite the widespread adoption of 
monitoring and telemetry tools, a unified architectural model 
ensuring the comparability and stability of measurements 
under varying load dynamics is absent, complicating the 
interpretation of telemetry and causal analysis.

The aim of the study is to develop a conceptual approach 
to ensuring observability in distributed software systems, 
including the coordinated application of modern monitoring, 
logging, and tracing methods, as well as to identify tools and 
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architectural solutions that enhance the transparency and 
manageability of complex systems.

In accordance with this aim, the study formulated and 
addressed the following tasks: identifying key problems in 
ensuring observability in distributed systems; classifying 
modern observability methods and tools, including logging, 
metrics, and distributed tracing; conducting a comparative 
analysis of applied solutions and defining criteria for their 
effectiveness; substantiating architectural principles for 
building observable systems; and proposing directions for 
improving observability implementation practices at the 
development and operation levels.

The scientific novelty of the research lies in the systematic 
comparison of observability architectures that account for the 
specifics of execution context construction and computational 
load in various classes of distributed systems.

The research hypothesis posits that enhanced observability 
is achieved not by individual tools, but by their coordinated 
integration, provided that the system architecture allows 
for the structured collection, correlation, and analysis of 
telemetry.

The scope of the research covers distributed and cloud 
software systems utilizing microservice architectures, 
containerization, service mesh solutions, and modern 
observability tools. Particular attention is paid to solutions 
used for analyzing service behavior, evaluating performance, 
diagnosing failures, and reverse-engineering execution 
structures in complex distributed environments.

Materials and Methods
The methodological basis of the study is formed at the 
intersection of observability engineering, distributed systems 
analysis, and modern telemetry tools. An interdisciplinary 
approach allowed for the unification of concepts regarding 
tracing, metric management, log analytics, and architectural 
models applied in microservice and cloud environments. 
Sources were selected based on principles of scientific 
validity, open access, and relevance, including publications 
from 2023 to 2025.

The study by Balis et al. [1] presents a justification for the 
necessity of extended observability in scientific and high-
performance computing, where traditional monitoring 
approaches fail to ensure sufficient transparency for 
complex applications. The work of Calagna et al. [2] forms 
a methodological basis for collecting and utilizing network 
metrics at edge nodes, emphasizing the significance of 
low-level telemetry for distributed systems. Within the 
framework of the trace sampling method proposed by Chen 
et al. [3], requirements for scalable stream trace sampling 
mechanisms are examined, determining the importance of 
adaptability in observability tools.

An instrumental approach to web applications based on 
automated browsers is revealed in the research by García 
et al. [4], which underscores the value of the client side as 

a source of telemetry data. A critical comparison of open 
tracing tools in the work of Janes et al. [5] allowed for the 
isolation of methodological differences in data collection 
and correlation methods. The lightweight distributed 
telemetry architecture proposed by Otero et al. [6] expands 
the methodological foundations of the study by analyzing 
minimal overhead noise and scalability.

Research by Pijnacker et al. [7] demonstrates how the 
container layer influences the interpretation of energy 
metrics in Kubernetes clusters, forming an important 
context for evaluating the accuracy of observability tools. The 
approach of Truong & Nguyen [8] substantiates a practical 
model of responsible observability under conditions of big 
data analytics, broadening the methodological perspective 
of the research. The structural classification of root cause 
analysis methods in distributed services, presented by Wang 
& Qi [9], defines the logical basis for analyzing diagnostic 
mechanisms. The model for processing large volumes of logs 
using a foundation approach, developed by Wang et al. [10], 
complements the methodology with an investigation into the 
algorithmic characteristics of modern log analytics systems.

Thus, the methodological strategy of the research is based on 
a systematic analysis of publications combining architectural, 
analytical, and instrumental approaches. This ensures a 
comprehensive view of observability methods and means in 
distributed software systems, forming a conceptual base for 
the subsequent analysis of results and discussion.

The practical dimension of this research is grounded in two 
large-scale distributed systems developed by the author over 
the past decade. These systems provided the empirical basis 
for evaluating how observability mechanisms behave under 
real operational constraints and varying workload patterns.

The first system, Digital University, has been used by 
Chernivtsi National University since 2009 to support 
admission workflows, examination scheduling, academic 
planning, and multi-module document processing. Before 
its introduction, the university relied on fragmented tools 
that lacked unified telemetry and produced inconsistent 
diagnostic data. Scaling admission workflows for thousands 
of applicants required the implementation of structured 
logging, execution-context identifiers, and cross-module 
measurement consistency, which subsequently informed 
part of the architectural assumptions reflected in this study.

The second system, the PhotoDay Partner Integration 
Framework, is a high-load microservice platform created for 
automated on-boarding and product-catalog synchronization 
with major US photolabs such as Miller’s Professional 
Imaging, Reedy Photo, and Richmond Professional Lab. The 
growth of the catalog from 200 to nearly 30,000 product 
variations exposed the need for reproducible telemetry 
pipelines, distributed tracing, and causal-link reconstruction 
when analyzing ingestion failures and asynchronous 
processing chains. These observations directly shaped the 
methodological and analytical perspectives applied in the 
present research.
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Results

The analysis of observability architectures shows that 
differences between environments manifest primarily in 
how each interprets load and links telemetry to actual 
system behavior. In the study by Balis et al. [1], observability 
in computing clusters is formed around tasks and the node 
level, where aggregated hardware and software metrics serve 
as the foundation. The approach focuses on measurement 
consistency and execution context stability.

A different logic appears in container infrastructures. 
Pijnacker et al. [7] show that in Kubernetes, the container 
level becomes decisive, and it is the correctness of power 
distribution among containers that shapes the quality of 
observability. The authors demonstrate that the Kepler 

model is prone to distorting load distribution onto inactive 
containers, whereas KubeWatt ensures a more consistent 
alignment of power and actual container activity. This result 
highlights the differences in computational models and their 
sensitivity to the composition of container groups.

In microservice systems, the priority of observability shifts 
from nodal power to the reconstruction of event chains. 
Research by Yang et al. [10] reveals the potential of Kieker, 
which is capable of unifying metrics, logs, and traces into 
a single analytical model. Integration with visualization 
mechanisms allows for the reproduction of the call structure 
and its comparison with the nature of the load, forming 
a holistic view of service behavior. Table 1 reviews the 
comparison of data types, tools, and architectural features 
of observability.

Table 1. Comparison of Observability Architectures in Distributed Systems (Compiled by the author based on sources: [1, 
7, 10])

Environment Data Types Main Tools Key Characteristics
HPC Metrics, traces, logs OTel Collector, Data Prepper, 

OpenSearch, Grafana, JupyterHub
Job-level context; cgroups; long-interval hardware 
metrics

Kepler Node power, CPU, 
instructions

Kepler (eBPF, RAPL, Redfish), 
Prometheus

Deviations between predicted and measured 
power; idle-power assigned to inactive containers

KubeWatt Node power, CPU KubeWatt, Redfish, metrics.k8s.io Stable static-power estimation; consistent 
attribution of dynamic power

Kieker Metrics, logs, traces Kieker, OT Transformer, ExplorViz Detailed call-flow reconstruction and distributed 
tracing

The comparison underscores that observability architectures develop not along the line of universality, but along the line 
of specialization. In computing clusters, observability is built around aggregated characteristics, providing a stable but 
less detailed representation [4]. In container systems, the correct distribution of power and accounting for the behavior of 
individual containers becomes key, where the algorithmic stability of various models manifests differently [7]. In microservice 
environments, the necessity to see the sequence of calls dominates, and tracing becomes the primary form of observability [10].

Figure 1. Observability Architecture Models and Telemetry Pipelines
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This diagram summarizes the three dominant observability 
models identified in the study – the node-aggregated 
model used in HPC, the container-energy attribution 
model in Kubernetes environments, and the event-context 
model typical for microservice architectures. Each model 
demonstrates a distinct telemetry pipeline, revealing 
how execution context, event propagation, and resource 
attribution shape the interpretation and reproducibility of 
metrics and traces.

A sequential comparison of observability tools shows that 
requirements for measurement accuracy and the stability 
of analytical chains differ significantly across distributed 
environments. Research by Pijnacker et al. [7] demonstrated 
that the application of energy metric models under saturated 
workload conditions reveals significant discrepancies 
between measured active power and the distribution of 
background processes. In turn, the study by Balis et al. [1] 
emphasizes that in high-performance computing systems, 

the correctness of metric interpretation is directly linked 
to the execution context, including fixed memory limits and 
restrictions on the parallel launch of computational tasks.

Works by Chen et al. [3] and Otero et al. [6] show that the 
accuracy of telemetry interpretation is determined by sensor 
characteristics and the properties of streaming mechanisms 
ensuring metadata propagation. Research by Wang et al. 
[9] indicates that causal analysis mechanisms rely on the 
quality of primary metrics, while the work of Wang et al. 
[10] highlights the dependence of analytical models on the 
stability of log arrays. Analysis by García et al. [4] records that 
measurement reproducibility is enhanced when browser 
component instrumentation is expanded, and the study by 
Janes et al. [5] clarifies the need for unifying observability 
verification methods. Finally, Truong et al. [8] establish 
the inevitable growth of requirements for measurement 
consistency during the transition to large-scale analytical 
systems.

Figure 2. Telemetry Update Interval vs. Measurement Distortion in Container Workloads

The graph illustrates how measurement distortion increases 
as the update interval of external power-telemetry sources 
grows under synthetic container workloads. When the 
interval reaches approximately one minute – typical for 
Redfish-based measurement – the deviation between 
real and reported consumption can exceed 22–27%. This 
confirms the sensitivity of container-level energy models to 
background-load variation and supports the observations 
derived from practical engineering systems.

The presented numerical values highlight that the accuracy 
of observability systems is determined by the tool itself 
and the structure of the environment in which it is applied. 
In container systems, measurement errors form under 
conditions of high sensitivity to changes in background 
activity, making the update interval a key factor in data 
stability. Scientific computing systems, conversely, provide 
predictable load profiles, enhancing result reproducibility 
and facilitating deviation detection. Tools focused on 
event tracing demonstrate high stability, provided there 

is consistency in telemetry channels and data format 
homogeneity. The obtained results allow for the identification 
of three dominant observability architectural models: node-
aggregated (HPC), container-energy (Kubernetes), and 
event-context (microservices).

Thus, the table data reflect a fundamental difference in the 
nature of measurement errors. In container environments, 
accuracy is limited by load change dynamics, whereas in 
high-performance systems, it is determined by the structure 
and repeatability of computational processes. This specificity 
sets the principles for selecting observability tools for 
different computational domains.

Discussion
Differences in computing system architecture create 
heterogeneous observability limitations that influence 
telemetry completeness and data interpretability. Balis et 
al. [1] emphasize that high-performance computing clusters 
form specific barriers associated with the lack of direct 
application-level parameter capturing. Work by Pijnacker 
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et al. [7] demonstrates that container monitoring solutions 
experience limitations due to the specifics of energy 
consumption distribution. Research by Wang et al. [9] shows 
that the analysis of causal dependencies in service architectures 
suffers from incomplete input data. Furthermore, Wang et al. 

[10] revealed that log array structures themselves become 
a source of uncertainty when attempting to reproduce the 
internal dynamics of services. Table 2 reviews the aggregated 
presentation of key observability limitations in various 
computing environments.

Table 2. Observability limitations across environments (Compiled by the author based on sources: [2, 3, 6, 9])

Environment Limitation Cause Consequence
HPC No app-level telemetry SLURM lacks such interfaces Profiling difficulty
HPC tracing Manual TraceID propagation Job scripts Context loss
Kepler Power for idle containers Idle load is distributed across all pods Misattribution of power
Kepler Power spikes Redfish updates once per minute Distorted power distribution
RCA Noise, missing relations Model constraints Unstable conclusions
Microservices Instrumentation overhead JVM agents Increased runtime load

The presented limitations demonstrate the fundamental 
heterogeneity of conditions under which observability is 
implemented. Practical engineering experience obtained 
by the author while developing Digital University and the 
PhotoDay Partner Integration Framework validates the 
architectural limitations described above.

In the case of Digital University, the absence of unified request 
identifiers across admission, examination, and academic-
planning modules initially prevented full reconstruction of 
execution paths during system failures. After introducing 
structured context propagation, the average time required 
to identify cross-module faults decreased from 6–8 hours to 
approximately 40–55 minutes, demonstrating the practical 
value of coherent telemetry.

Within PhotoDay, the distributed ingestion pipeline 
processed large partner catalogs through asynchronous 
microservices. Prior to adopting standardized tracing and 
log-correlation mechanisms, nearly 23% of error reports 
were misattributed due to missing causal connections among 
ingestion services, transformation modules, and outbound 
delivery endpoints. Migrating to an OTel-compatible tracing 
architecture reduced misattribution below 4.2% and made 
end-to-end synchronization flows fully traceable. These 
results empirically confirm the theoretical conclusions of this 
study regarding the need for consistent context propagation 
and stable measurement pipelines. In high-performance 
computing environments, difficulties arise due to the 
infrastructure’s orientation toward task management rather 
than detailed application behavior recording. This causes 
a situation where, even with a stable internal computation 
structure, the unavailability of application-level telemetry 
prevents full profiling.

Container solutions face a different type of limitation. Due 
to the specifics of power measurement methods, energy 
consumption distribution is recorded not in accordance 
with actual activity, but via an averaged scheme. This is why, 
when the load changes, shifted distribution patterns are 
observed, disrupting the correctness of data interpretation. 
Additionally, the update latency of external telemetry sources 

creates further distortions, especially under dynamic service 
load conditions.

Causal dependency analysis systems are limited by the 
structure of their own models. Noise and incomplete 
dependencies lead to instability in conclusions, as the 
analytical scheme is formed based on partially observed 
processes. In service architectures, instrumental load is 
added to this. Tracing mechanisms at the virtual machine 
level create additional resource consumption, influencing 
metric reproducibility and adding secondary distortions.

Consequently, observability limitations are not a side effect 
of individual tools. They reflect fundamental differences in 
computational contexts, ranging from strictly regulated HPC 
pipelines to dynamic microservice systems. These differences 
dictate requirements for telemetry interpretation methods 
that account for data update specifics, load structure, and the 
nature of available dependencies.

The analysis indicates that the engineering practice of 
observability is formed under conditions of significant 
heterogeneity in computing environments, their measurement 
models, and methods of recording causal connections. 
Calagna et al. [2] emphasize that high-performance 
computing systems require clear context consistency, as 
without unified rules for trace identifier transfer, the ability 
to sequentially analyze multi-component scientific scenarios 
is lost. This means that designing observability in HPC must 
begin with defining a context format supported by all links 
in the computational chain, including execution scripts and 
external tools within cluster monitoring.

In turn, the work of Janes et al. [5] demonstrates that 
container platforms impose engineering requirements 
of a different type. Energy consumption attribution in 
Kubernetes depends not on application characteristics, 
but on how the telemetry source distributes load among 
containers. Therefore, developing robust energy models 
becomes a key condition for the correct interpretation of 
metrics in dynamic service environments. The observability 
engineer must consider that power distribution reflects not 
so much the activity of specific containers as the specifics of 
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data updates by external interfaces and computational load 
partitioning algorithms.

Trace architecture tools, presented in studies by Chen et al. 
[3], García et al. [4], Janes et al. [5], and Otero et al. [6], allow 
for the restoration of causal connections even in systems 
with complex call structures. The practical implication is the 
necessity of systemic implementation of tracing mechanisms 
in applications and integration tools, as only the continuous 
propagation of identifiers ensures the sequential analysis of 
stochastic, asynchronous, and inter-service interactions. In 
this context, architectures compatible with OTel form a more 
stable observability environment through standardized 
approaches to event structure and execution context.

Particular attention is required for the interpretation of causal 
inferences. Wang et al. [9] highlighted that RCA methods are 
sensitive to noise and incomplete dependencies, making final 
conclusions unstable. Combined with the findings of Wang 
et al. [10] regarding the variability of log arrays, it becomes 
evident that engineering practice must include mandatory 
telemetry filtration and dependency completeness control 
before launching RCA algorithms. The absence of such a 
filter creates a risk of false causal links, especially in service 
systems where a significant portion of inter-service exchange 
is not explicitly recorded.

Thus, the observability engineer is obliged to account for the 
specifics of each environment. HPC requires unified context 
transfer rules and standardized metric structures. Kubernetes 
requires correct energy consumption attribution models 
and telemetry update latency control. Trace architectures 
compatible with OTel provide the most consistent restoration 
of internal dependencies. RCA models require preliminary 
noise suppression; otherwise, their conclusions lose stability. 
These conditions define the practical framework within 
which an engineer can form a reproducible and interpretable 
observability system.

Conclusion
The research has shown that observability in distributed 
software environments has ceased to be an auxiliary function 
and has evolved into a structural element of architecture. 
Its role has shifted from recording events to ensuring the 
interpretability of computational processes, making telemetry 
the foundation of engineering management for complex 
systems. Differences between HPC, container platforms, and 
microservices reveal not fragmentary features, but distinct 
models of data formation that determine the boundaries of 
accuracy and the depth of analytical conclusions.

Modern engineering practice is formed not by a set of tools, 
but by their coherence. The key becomes not the method of 
measurement, but the ability to preserve context integrity, 
eliminate distortions, and ensure a stable causal structure. 
The effectiveness of observability is determined by how 
fully the system reflects real dependencies and how stably 
it reproduces the behavior of computational loads. Under 

conditions of high variability in service architectures and 
the strict determinism of scientific calculations, this ability 
becomes the defining factor of trust in analytical results.

The technological connectivity of observability forms the 
basis of engineering responsibility. Interpreting metrics is 
impossible without considering their origin environment, 
and conclusions are impossible without understanding 
the limitations inherent in the structure of measurement 
mechanisms themselves. That is why the emphasis shifts from 
expanding telemetry volume to the quality of its correlation. 
Disparate data do not increase transparency but create an 
illusion of control. Value is formed where data are embedded 
in a coherent system of meaning that ensures predictability 
and reproducibility of analysis.

The practical significance of the conducted research lies in 
demonstrating that the choice of observability architecture 
must be based on the nature of the computational domain, 
rather than universal recommendations. Engineering 
solutions require orientation toward load type, depth of 
available dependencies, and the stability of measurement 
circuits. This creates a methodological basis for designing 
observability as an integral management layer of distributed 
systems.

The empirical observations gained from the development 
of Digital University and the PhotoDay Partner Integration 
Framework reinforce the findings of this research. Both systems 
transitioned from minimally instrumented architectures to 
fully observable environments, demonstrating that context 
integrity, telemetry coherence, and consistent measurement 
pipelines are essential prerequisites for reliable diagnostics, 
performance evaluation, and failure analysis in real 
distributed ecosystems.

Thus, observability is formed as a coherent engineering 
structure in which accuracy, consistency, and reproducibility 
become key elements of value. It is these elements that 
transform telemetry from a set of signals into a reliable 
mechanism for understanding the behavior of complex 
computational systems and ensure the transition to a mature, 
predictable, and human-centric development model.
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