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The article presents a comprehensive analysis of methods and tools for ensuring observability in distributed software systems,
including high-performance computing environments, container-based platforms, and microservice architectures. The
study is based on comparing structural properties of telemetry, data-collection models, and mechanisms for reconstructing
causal relationships as described in contemporary scientific publications. It examines differences in execution-context
formation, measurement accuracy, and metric reproducibility across environments with varying workload dynamics.
Special attention is given to the impact of architectural constraints on resource attribution, trace-data interpretation,
and the stability of analytical outcomes. The practical consequences for engineers are outlined, including the need to
standardize context propagation in HPC, develop valid energy-attribution models in Kubernetes, implement consistent
tracing mechanisms in microservices, and apply telemetry filtering in causal-analysis workflows. The study demonstrates
that the key condition for mature observability is not the volume of collected data but the coherence and reproducibility
of measurement pipelines, which enable a holistic understanding of distributed-system behavior. The article may be useful
for observability-engineering specialists, distributed-application developers, system architects, and researchers studying
telemetry-interpretation methods in complex computational environments.
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INTRODUCTION isolated observation. For distributed systems, such integrity
is particularly important, as failures often arise not within a

The observability of distributed software systems is becoming e . . . .
specific component, but at the intersection of interactions.

a critical condition for their stability, manageability, and

predictability. The growing complexity of architectures,
the transition to microservices, containerization, and
cloud orchestrators has led to a situation where traditional
monitoring mechanisms no longer provide sufficient depth
of understanding regarding ongoing processes [3]. Whereas
engineers were previously limited to reviewing metrics
and logs of individual services, the system now interacts
across dozens of network nodes, generates a large number
of asynchronous operations, and depends on external
platforms, making its behavior less transparent.

The transition to modern observability models has emerged
as a response to the need to visualize the symptoms and
causes of deviations. Unlike classical monitoring, which
focuses on fixed indicators, observability integrates metrics,
logs, and traces into a single analysis loop [7]. This allows
for the restoration of execution context, tracking of request
paths across multiple services, and the identification of
connections between events that are inaccessible during

However, existing approaches to observability remain
fragmented. Some solutions focus on collecting metrics,
others on tracing, and still others on log analysis. Many teams
implement tools in a piecemeal fashion without a general
architectural model, which leads to data disjointedness and
complicates diagnostics [2]. There is a need for a systemic
understanding of how various observability methods
and tools function jointly, what tasks they solve, and what
limitations they possess during operation in real distributed
environments. Despite the widespread adoption of
monitoring and telemetry tools, a unified architectural model
ensuring the comparability and stability of measurements
under varying load dynamics is absent, complicating the
interpretation of telemetry and causal analysis.

The aim of the study is to develop a conceptual approach
to ensuring observability in distributed software systems,
including the coordinated application of modern monitoring,
logging, and tracing methods, as well as to identify tools and
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architectural solutions that enhance the transparency and
manageability of complex systems.

In accordance with this aim, the study formulated and
addressed the following tasks: identifying key problems in
ensuring observability in distributed systems; classifying
modern observability methods and tools, including logging,
metrics, and distributed tracing; conducting a comparative
analysis of applied solutions and defining criteria for their
effectiveness; substantiating architectural principles for
building observable systems; and proposing directions for
improving observability implementation practices at the
development and operation levels.

The scientific novelty of the research lies in the systematic
comparison of observability architectures that account for the
specifics of execution context construction and computational
load in various classes of distributed systems.

The research hypothesis posits that enhanced observability
is achieved not by individual tools, but by their coordinated
integration, provided that the system architecture allows
for the structured collection, correlation, and analysis of
telemetry.

The scope of the research covers distributed and cloud
software systems utilizing microservice architectures,
containerization, service mesh solutions, and modern
observability tools. Particular attention is paid to solutions
used for analyzing service behavior, evaluating performance,
diagnosing failures, and reverse-engineering execution
structures in complex distributed environments.

MATERIALS AND METHODS

The methodological basis of the study is formed at the
intersection of observability engineering, distributed systems
analysis, and modern telemetry tools. An interdisciplinary
approach allowed for the unification of concepts regarding
tracing, metric management, log analytics, and architectural
models applied in microservice and cloud environments.
Sources were selected based on principles of scientific
validity, open access, and relevance, including publications
from 2023 to 2025.

The study by Balis et al. [1] presents a justification for the
necessity of extended observability in scientific and high-
performance computing, where traditional monitoring
approaches fail to ensure sufficient transparency for
complex applications. The work of Calagna et al. [2] forms
a methodological basis for collecting and utilizing network
metrics at edge nodes, emphasizing the significance of
low-level telemetry for distributed systems. Within the
framework of the trace sampling method proposed by Chen
et al. [3], requirements for scalable stream trace sampling
mechanisms are examined, determining the importance of
adaptability in observability tools.

An instrumental approach to web applications based on
automated browsers is revealed in the research by Garcia
et al. [4], which underscores the value of the client side as

a source of telemetry data. A critical comparison of open
tracing tools in the work of Janes et al. [5] allowed for the
isolation of methodological differences in data collection
and correlation methods. The lightweight distributed
telemetry architecture proposed by Otero et al. [6] expands
the methodological foundations of the study by analyzing
minimal overhead noise and scalability.

Research by Pijnacker et al. [7] demonstrates how the
container layer influences the interpretation of energy
metrics in Kubernetes clusters, forming an important
context for evaluating the accuracy of observability tools. The
approach of Truong & Nguyen [8] substantiates a practical
model of responsible observability under conditions of big
data analytics, broadening the methodological perspective
of the research. The structural classification of root cause
analysis methods in distributed services, presented by Wang
& Qi [9], defines the logical basis for analyzing diagnostic
mechanisms. The model for processing large volumes of logs
using a foundation approach, developed by Wang et al. [10],
complements the methodology with an investigation into the
algorithmic characteristics of modern log analytics systems.

Thus, the methodological strategy of the research is based on
a systematic analysis of publications combining architectural,
analytical, and instrumental approaches. This ensures a
comprehensive view of observability methods and means in
distributed software systems, forming a conceptual base for
the subsequent analysis of results and discussion.

The practical dimension of this research is grounded in two
large-scale distributed systems developed by the author over
the past decade. These systems provided the empirical basis
for evaluating how observability mechanisms behave under
real operational constraints and varying workload patterns.

The first system, Digital University, has been used by
Chernivtsi National University since 2009 to support
admission workflows, examination scheduling, academic
planning, and multi-module document processing. Before
its introduction, the university relied on fragmented tools
that lacked unified telemetry and produced inconsistent
diagnostic data. Scaling admission workflows for thousands
of applicants required the implementation of structured
logging, execution-context identifiers, and cross-module
measurement consistency, which subsequently informed
part of the architectural assumptions reflected in this study.

The second system, the PhotoDay Partner Integration
Framework, is a high-load microservice platform created for
automated on-boarding and product-catalog synchronization
with major US photolabs such as Miller’s Professional
Imaging, Reedy Photo, and Richmond Professional Lab. The
growth of the catalog from 200 to nearly 30,000 product
variations exposed the need for reproducible telemetry
pipelines, distributed tracing, and causal-link reconstruction
when analyzing ingestion failures and asynchronous
processing chains. These observations directly shaped the
methodological and analytical perspectives applied in the
present research.
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RESULTS

The analysis of observability architectures shows that
differences between environments manifest primarily in
how each interprets load and links telemetry to actual
system behavior. In the study by Balis et al. [1], observability
in computing clusters is formed around tasks and the node
level, where aggregated hardware and software metrics serve
as the foundation. The approach focuses on measurement
consistency and execution context stability.

A different logic appears in container infrastructures.
Pijnacker et al. [7] show that in Kubernetes, the container
level becomes decisive, and it is the correctness of power
distribution among containers that shapes the quality of
observability. The authors demonstrate that the Kepler

model is prone to distorting load distribution onto inactive
containers, whereas KubeWatt ensures a more consistent
alignment of power and actual container activity. This result
highlights the differences in computational models and their
sensitivity to the composition of container groups.

In microservice systems, the priority of observability shifts
from nodal power to the reconstruction of event chains.
Research by Yang et al. [10] reveals the potential of Kieker,
which is capable of unifying metrics, logs, and traces into
a single analytical model. Integration with visualization
mechanisms allows for the reproduction of the call structure
and its comparison with the nature of the load, forming
a holistic view of service behavior. Table 1 reviews the
comparison of data types, tools, and architectural features
of observability.

Table 1. Comparison of Observability Architectures in Distributed Systems (Compiled by the author based on sources: [1,

7,10])
Environment |Data Types Main Tools Key Characteristics
HPC Metrics, traces, logs |0Tel Collector, Data Prepper,|]Job-level context; cgroups; long-interval hardware
OpenSearch, Grafana, JupyterHub |metrics
Kepler Node power, CPU,|Kepler (eBPF, RAPL, Redfish),|Deviations between predicted and measured
instructions Prometheus power; idle-power assigned to inactive containers
KubeWatt Node power, CPU  |KubeWatt, Redfish, metrics.k8s.io |Stable static-power estimation; consistent
attribution of dynamic power
Kieker Metrics, logs, traces | Kieker, OT Transformer, ExplorViz |Detailed call-flow reconstruction and distributed
tracing

The comparison underscores that observability architectures develop not along the line of universality, but along the line
of specialization. In computing clusters, observability is built around aggregated characteristics, providing a stable but
less detailed representation [4]. In container systems, the correct distribution of power and accounting for the behavior of
individual containers becomes key, where the algorithmic stability of various models manifests differently [7]. In microservice
environments, the necessity to see the sequence of calls dominates, and tracing becomes the primary form of observability [10].
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Figure 1. Observability Architecture Models and Telemetry Pipelines
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This diagram summarizes the three dominant observability
models identified in the study - the node-aggregated
model used in HPC, the container-energy attribution
model in Kubernetes environments, and the event-context
model typical for microservice architectures. Each model
demonstrates a distinct telemetry pipeline, revealing
how execution context, event propagation, and resource
attribution shape the interpretation and reproducibility of
metrics and traces.

A sequential comparison of observability tools shows that
requirements for measurement accuracy and the stability
of analytical chains differ significantly across distributed
environments. Research by Pijnacker et al. [7] demonstrated
that the application of energy metric models under saturated
workload conditions reveals significant discrepancies
between measured active power and the distribution of
background processes. In turn, the study by Balis et al. [1]
emphasizes that in high-performance computing systems,

the correctness of metric interpretation is directly linked
to the execution context, including fixed memory limits and
restrictions on the parallel launch of computational tasks.

Works by Chen et al. [3] and Otero et al. [6] show that the
accuracy of telemetry interpretation is determined by sensor
characteristics and the properties of streaming mechanisms
ensuring metadata propagation. Research by Wang et al.
[9] indicates that causal analysis mechanisms rely on the
quality of primary metrics, while the work of Wang et al.
[10] highlights the dependence of analytical models on the
stability of log arrays. Analysis by Garcia et al. [4] records that
measurement reproducibility is enhanced when browser
component instrumentation is expanded, and the study by
Janes et al. [5] clarifies the need for unifying observability
verification methods. Finally, Truong et al. [8] establish
the inevitable growth of requirements for measurement
consistency during the transition to large-scale analytical
systems.
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Figure 2. Telemetry Update Interval vs. Measurement Distortion in Container Workloads

The graph illustrates how measurement distortion increases
as the update interval of external power-telemetry sources
grows under synthetic container workloads. When the
interval reaches approximately one minute - typical for
Redfish-based measurement - the deviation between
real and reported consumption can exceed 22-27%. This
confirms the sensitivity of container-level energy models to
background-load variation and supports the observations
derived from practical engineering systems.

The presented numerical values highlight that the accuracy
of observability systems is determined by the tool itself
and the structure of the environment in which it is applied.
In container systems, measurement errors form under
conditions of high sensitivity to changes in background
activity, making the update interval a key factor in data
stability. Scientific computing systems, conversely, provide
predictable load profiles, enhancing result reproducibility
and facilitating deviation detection. Tools focused on
event tracing demonstrate high stability, provided there

is consistency in telemetry channels and data format
homogeneity. The obtained results allow for the identification
of three dominant observability architectural models: node-
aggregated (HPC), container-energy (Kubernetes), and
event-context (microservices).

Thus, the table data reflect a fundamental difference in the
nature of measurement errors. In container environments,
accuracy is limited by load change dynamics, whereas in
high-performance systems, it is determined by the structure
and repeatability of computational processes. This specificity
sets the principles for selecting observability tools for
different computational domains.

DISCUSSION

Differences in computing system architecture create
heterogeneous observability limitations that influence
telemetry completeness and data interpretability. Balis et
al. [1] emphasize that high-performance computing clusters
form specific barriers associated with the lack of direct
application-level parameter capturing. Work by Pijnacker
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et al. [7] demonstrates that container monitoring solutions
experience limitations due to the specifics of energy
consumption distribution. Research by Wang et al. [9] shows
that the analysis of causal dependencies in service architectures
suffers from incomplete input data. Furthermore, Wang et al.

[10] revealed that log array structures themselves become
a source of uncertainty when attempting to reproduce the
internal dynamics of services. Table 2 reviews the aggregated
presentation of key observability limitations in various
computing environments.

Table 2. Observability limitations across environments (Compiled by the author based on sources: [2, 3, 6, 9])

Environment |Limitation Cause Consequence

HPC No app-level telemetry SLURM lacks such interfaces Profiling difficulty

HPC tracing Manual TracelD propagation | Job scripts Context loss

Kepler Power for idle containers Idle load is distributed across all pods | Misattribution of power
Kepler Power spikes Redfish updates once per minute Distorted power distribution
RCA Noise, missing relations Model constraints Unstable conclusions
Microservices | Instrumentation overhead JVM agents Increased runtime load

The presented limitations demonstrate the fundamental
heterogeneity of conditions under which observability is
implemented. Practical engineering experience obtained
by the author while developing Digital University and the
PhotoDay Partner Integration Framework validates the
architectural limitations described above.

In the case of Digital University, the absence of unified request
identifiers across admission, examination, and academic-
planning modules initially prevented full reconstruction of
execution paths during system failures. After introducing
structured context propagation, the average time required
to identify cross-module faults decreased from 6-8 hours to
approximately 40-55 minutes, demonstrating the practical
value of coherent telemetry.

Within PhotoDay, the distributed ingestion pipeline
processed large partner catalogs through asynchronous
microservices. Prior to adopting standardized tracing and
log-correlation mechanisms, nearly 23% of error reports
were misattributed due to missing causal connections among
ingestion services, transformation modules, and outbound
delivery endpoints. Migrating to an OTel-compatible tracing
architecture reduced misattribution below 4.2% and made
end-to-end synchronization flows fully traceable. These
results empirically confirm the theoretical conclusions of this
study regarding the need for consistent context propagation
and stable measurement pipelines. In high-performance
computing environments, difficulties arise due to the
infrastructure’s orientation toward task management rather
than detailed application behavior recording. This causes
a situation where, even with a stable internal computation
structure, the unavailability of application-level telemetry
prevents full profiling.

Container solutions face a different type of limitation. Due
to the specifics of power measurement methods, energy
consumption distribution is recorded not in accordance
with actual activity, but via an averaged scheme. This is why,
when the load changes, shifted distribution patterns are
observed, disrupting the correctness of data interpretation.
Additionally, the update latency of external telemetry sources

creates further distortions, especially under dynamic service
load conditions.

Causal dependency analysis systems are limited by the
structure of their own models. Noise and incomplete
dependencies lead to instability in conclusions, as the
analytical scheme is formed based on partially observed
processes. In service architectures, instrumental load is
added to this. Tracing mechanisms at the virtual machine
level create additional resource consumption, influencing
metric reproducibility and adding secondary distortions.

Consequently, observability limitations are not a side effect
of individual tools. They reflect fundamental differences in
computational contexts, ranging from strictly regulated HPC
pipelines to dynamic microservice systems. These differences
dictate requirements for telemetry interpretation methods
that account for data update specifics, load structure, and the
nature of available dependencies.

The analysis indicates that the engineering practice of
observability is formed under conditions of significant
heterogeneity in computing environments, their measurement
models, and methods of recording causal connections.
Calagna et al. [2] emphasize that high-performance
computing systems require clear context consistency, as
without unified rules for trace identifier transfer, the ability
to sequentially analyze multi-component scientific scenarios
is lost. This means that designing observability in HPC must
begin with defining a context format supported by all links
in the computational chain, including execution scripts and
external tools within cluster monitoring.

In turn, the work of Janes et al. [5] demonstrates that
container platforms impose engineering requirements
of a different type. Energy consumption attribution in
Kubernetes depends not on application characteristics,
but on how the telemetry source distributes load among
containers. Therefore, developing robust energy models
becomes a key condition for the correct interpretation of
metrics in dynamic service environments. The observability
engineer must consider that power distribution reflects not
so much the activity of specific containers as the specifics of
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data updates by external interfaces and computational load
partitioning algorithms.

Trace architecture tools, presented in studies by Chen et al.
[3], Garcia et al. [4], Janes et al. [5], and Otero et al. [6], allow
for the restoration of causal connections even in systems
with complex call structures. The practical implication is the
necessity of systemic implementation of tracing mechanisms
in applications and integration tools, as only the continuous
propagation of identifiers ensures the sequential analysis of
stochastic, asynchronous, and inter-service interactions. In
this context, architectures compatible with OTel form a more
stable observability environment through standardized
approaches to event structure and execution context.

Particular attention is required for the interpretation of causal
inferences. Wang et al. [9] highlighted that RCA methods are
sensitive to noise and incomplete dependencies, making final
conclusions unstable. Combined with the findings of Wang
et al. [10] regarding the variability of log arrays, it becomes
evident that engineering practice must include mandatory
telemetry filtration and dependency completeness control
before launching RCA algorithms. The absence of such a
filter creates a risk of false causal links, especially in service
systems where a significant portion of inter-service exchange
is not explicitly recorded.

Thus, the observability engineer is obliged to account for the
specifics of each environment. HPC requires unified context
transfer rules and standardized metric structures. Kubernetes
requires correct energy consumption attribution models
and telemetry update latency control. Trace architectures
compatible with OTel provide the most consistent restoration
of internal dependencies. RCA models require preliminary
noise suppression; otherwise, their conclusions lose stability.
These conditions define the practical framework within
which an engineer can form a reproducible and interpretable
observability system.

CONCLUSION

The research has shown that observability in distributed
software environments has ceased to be an auxiliary function
and has evolved into a structural element of architecture.
Its role has shifted from recording events to ensuring the
interpretability of computational processes, making telemetry
the foundation of engineering management for complex
systems. Differences between HPC, container platforms, and
microservices reveal not fragmentary features, but distinct
models of data formation that determine the boundaries of
accuracy and the depth of analytical conclusions.

Modern engineering practice is formed not by a set of tools,
but by their coherence. The key becomes not the method of
measurement, but the ability to preserve context integrity,
eliminate distortions, and ensure a stable causal structure.
The effectiveness of observability is determined by how
fully the system reflects real dependencies and how stably
it reproduces the behavior of computational loads. Under

conditions of high variability in service architectures and
the strict determinism of scientific calculations, this ability
becomes the defining factor of trust in analytical results.

The technological connectivity of observability forms the
basis of engineering responsibility. Interpreting metrics is
impossible without considering their origin environment,
and conclusions are impossible without understanding
the limitations inherent in the structure of measurement
mechanisms themselves. That is why the emphasis shifts from
expanding telemetry volume to the quality of its correlation.
Disparate data do not increase transparency but create an
illusion of control. Value is formed where data are embedded
in a coherent system of meaning that ensures predictability
and reproducibility of analysis.

The practical significance of the conducted research lies in
demonstrating that the choice of observability architecture
must be based on the nature of the computational domain,
rather than wuniversal recommendations. Engineering
solutions require orientation toward load type, depth of
available dependencies, and the stability of measurement
circuits. This creates a methodological basis for designing
observability as an integral management layer of distributed
systems.

The empirical observations gained from the development
of Digital University and the PhotoDay Partner Integration
Framework reinforce the findings of this research. Both systems
transitioned from minimally instrumented architectures to
fully observable environments, demonstrating that context
integrity, telemetry coherence, and consistent measurement
pipelines are essential prerequisites for reliable diagnostics,
performance evaluation, and failure analysis in real
distributed ecosystems.

Thus, observability is formed as a coherent engineering
structure in which accuracy, consistency, and reproducibility
become key elements of value. It is these elements that
transform telemetry from a set of signals into a reliable
mechanism for understanding the behavior of complex
computational systems and ensure the transition to a mature,
predictable, and human-centric development model.
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